SAFETY AND ECONOMIC ASPECTS OF THE WIND ON AVIATION

NASA – Goddard Space Flight Center; Nasa Visualization Explorer; https://svs.gsfc.nasa.gov/10902

Roland Winkler

Outline

- > Introduction
- ➤ Airport / Terminal

Credit: Wikimedia Commons – Bae146 Titan Crosswind Landing; Photo: Maarten Visser

INTRODUCTION

Introduction

In general there is a simple relationship between aviation and wind:

- ➤ Take Off / Landing

 against the direction of the wind
- > En-Route

in the direction of the wind

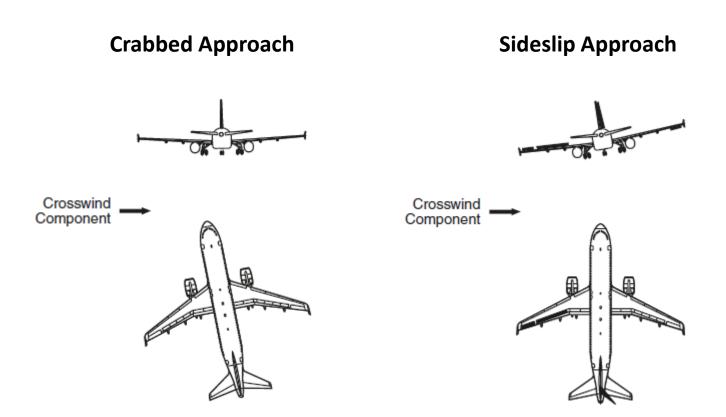
BUT:

Credit: Wikipedia – Seitenwindlandung; Photo: Hansueli Krapf

AIRPORT / TERMINAL

Airport / Terminal

Credit: Wikipedia – Windsack; Photo: Olaf Oliviero Riemer


Hazard and Economic Impact

- Crosswind
- > Tailwind
- ➤ Windshear

Crosswind – Effect On Aircaft

- wind with a component directed perpendicular to heading of an aircraft
- critical to air navigation biggest impact during takeoff and landing
- > landing into the wind
 - √ minimized groundspeed
 - ✓ shorter runway required to achieve lift-off
 - ✓ pilots have more time making adjustments for smooth landing
- > crosswind aircraft directional control is affected
 - ✓ aircraft may drift off the side of the runway
 - ✓ sideload on landing gear may occur

Crosswind

Credit: FSF ALAR Briefing Note, 8.7 – Crosswind Landings; Flight Safety Foundation / Flight Safety Digest, November 2000

Crosswind

Factors Included in Typical Recommended Maximum Crosswind

Reported Braking Action (Index)	Reported Runway Friction Coefficient	Equivalent Runway Condition	Recommended Maximum Crosswind
Good (5)	0.40 and above	(See Note 1)	35 knots
Good / Medium (4)	0.36 to 0.39	(See Note 1)	30 knots
Medium (3)	0.30 to 0.35	(See Notes 2 and 3)	25 knots
Medium / Poor (2)	0.26 to 0.29	(See Note 3)	20 knots
Poor (1)	0.25 and below	(See Notes 3 and 4)	15 knots
Unreliable (9)	Unreliable	(See Notes 4 and 5)	5 knots

Note 1: Dry, damp or wet runway (less than three millimeters [0.1 inch] of water) without risk of hydroplaning.

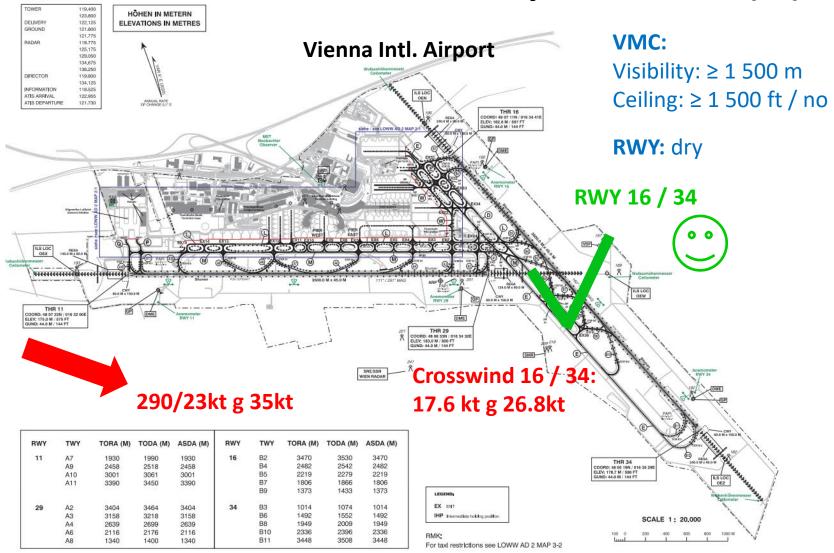
Note 2: Runway covered with dry snow.

Note 3: Runway covered with slush.

Note 4: Runway covered with standing water, with risk of hydroplaning, or with slush.

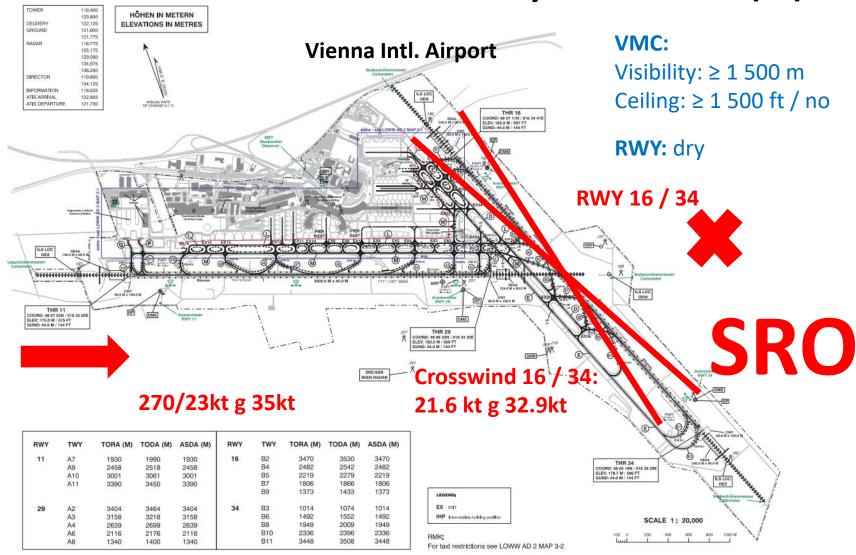
Note 5: Runway with high risk of hydroplaning.

Source: Flight Safety Foundation Approach-and-landing Accident Reduction (ALAR) Task Force


Vienna Int. Airport

Dry: mean: 25 kt, gusts: 30 kt

Wet: mean: 20 kt, gusts: 25 kt


Credit: FSF ALAR Briefing Note, 8.7 – Crosswind Landings; Flight Safety Foundation / Flight Safety Digest, November 2000

Crosswind – Case Study LOWW (1)

Credit: Roland Winkler; Figure Airport: Austro Control GmbH – LOWW AD 2 MAP 1-1 AIRAC AMDT 244 / 22 APR 2021

Crosswind – Case Study LOWW (2)

Credit: Roland Winkler; Figure Airport: Austro Control GmbH – LOWW AD 2 MAP 1-1 AIRAC AMDT 244 / 22 APR 2021

Credit: Wikipedia – Continental Airlines Flight 1404; Original: NTSB – https://aviationsafety.net/photos/displayphoto.php?id=200812 20-0&vnr=2&kind=C Continental Airlines Flight 1404 wreckage

Crosswind Accident

- December 20, 2008
- Denver Int. Airport, RWY 34R
- take off veered off the side of the runway
- ➤ speed plane: 87 90 kt
- reported wind: 24 27 kt, gusts nearly 32 kt
- crosswind limitation for 737:33 kt (dry runway)
- ➤ 40 kt crosswind at end of the runway

Aircraft was hit with a peak gust crosswind of 45 kt.

Credit: AIID Ref No:
CA18/2/3/10070 –
Preliminary Report;
Accident and Incident
Investigations Division,
South African Civil
Aviation Authority,
Republic of South Africa

EUMeTrain Wind Event Week 28 February – 4 March 2022

Crosswind Accident

- ➤ November 6, 2021
- > Tambo Int. Airport, RWY 03L
- > FNA: ATC reported 300/22kt
- crosswind landing technique
- pilot attempt to land within touchdown zone
- was not possible
- pilot concluded wind shear
- go-around during initial stage

gust from left caused aircraft to bank (wing scratches 110 m long over the runway)

Tailwind

≻ Take Off

- √ take off run will be longer
- ✓ reduced allowable take off weight
- ✓ reduced climb gradient

Economic Impact

CFIT

> Approach

- √ increased ground speed
- ✓ increased rate of descent

≻ Landing

- ✓ greater ground speed at landing
- √ longer landing roll
- √ increased stopping distance

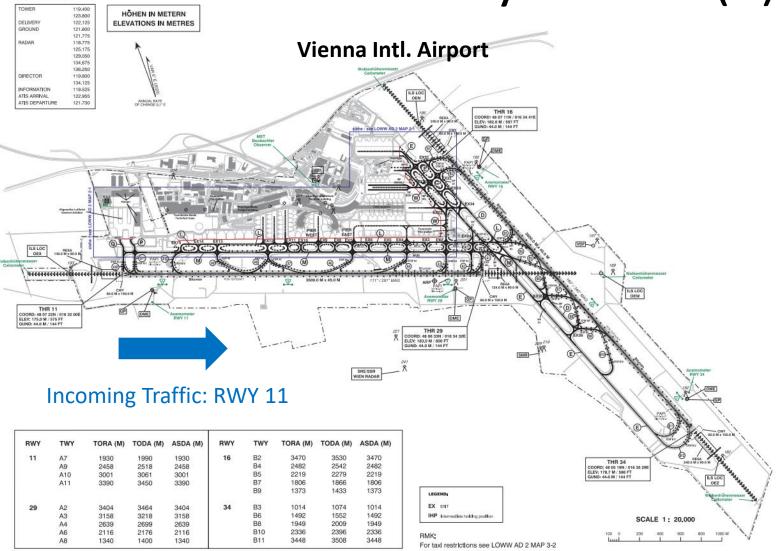
Runway Excursions

Tailwind

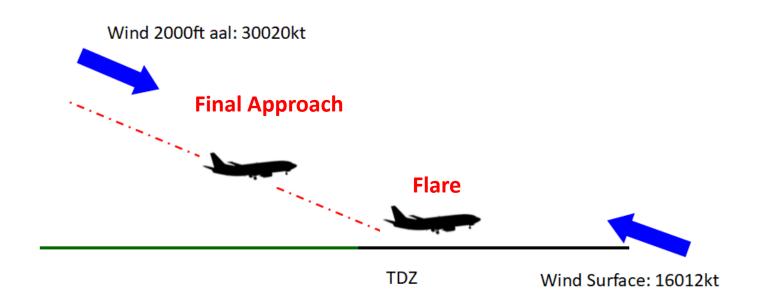
Running Out Of Runway Analysis Of 35 Years Of Landing Overrun Accidents

Factor	Number of accidents	Percent
Non-precision approach	289	72.3%
Long landing	211	52.8%
Excess approach speed	111	27.8%
Hydroplaning of the tires	60	15.0%
Late or no application of available stopping devices	60	15.0%
Visual approach	56	14.0%
Tailwind present	49	12.3%
High on approach	29	7.3%
Brakes inoperative	21	5.3%
Reverser inoperative	10	2.5%
Ground spoilers inoperative	2	0.5%

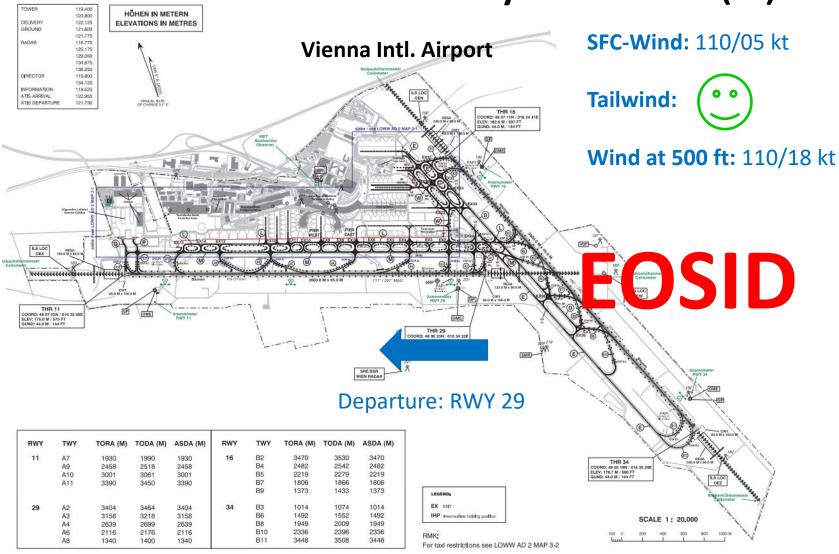
Credit: Nationaal Lucht- en Ruimtevaartlaboratorium (NLR); Database:
National Aerospace Laboratory Air Safety database


Tailwind – Accident

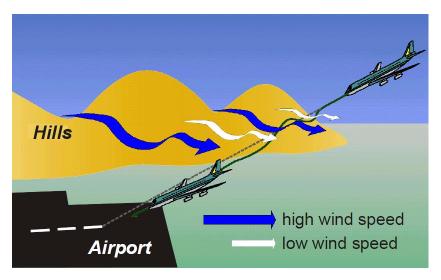
Credit: Wikimedia Commons; Original: NASA Langley Research Center; Source: https://aviation-safety.net/photo/4347/DC-9-31-N961VJ

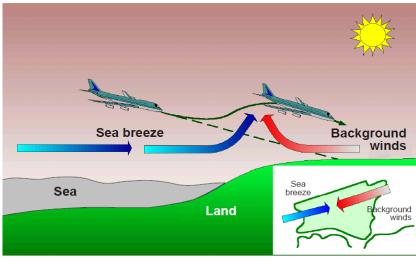

- February 21, 1986
- > Erie Int. Airport
- wind: 030/10 kt; wind picked up
- > tailwind: 10 to 11 kt
- runway covered snow
- breaking action: fair to poor
- touch down some 2 000 ft beyond displaced threshold
- spoilers, reverse thrust, brakes activated

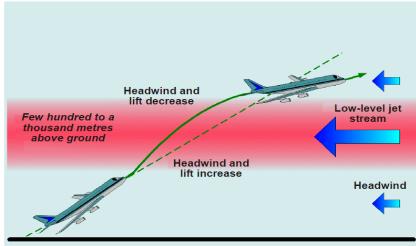
Tailwind – Case Study LOWW (3)

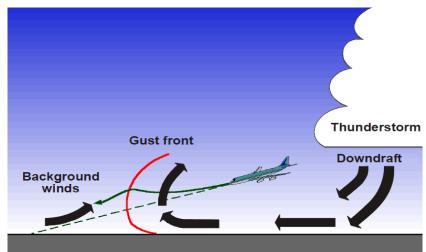

Credit: Roland Winkler; Figure Airport: Austro Control GmbH – LOWW AD 2 MAP 1-1 AIRAC AMDT 244 / 22 APR 2021

Tailwind – Case Study LOWW (3)

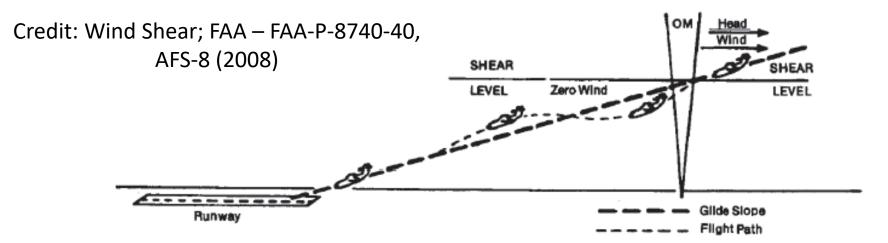

Credit: Roland Winkler; Aircraft: Publicdomainvectors.org

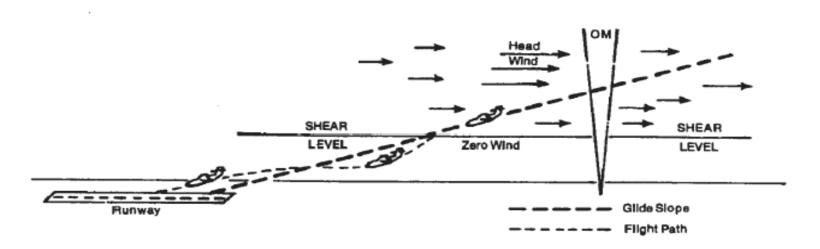

Tailwind – Case Study LOWW (4)




Credit: Roland Winkler; Figure Airport: Austro Control GmbH – LOWW AD 2 MAP 1-1 AIRAC AMDT 244 / 22 APR 2021

Wind Shear



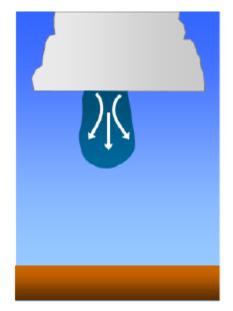

Credit: Manual on Low-Level Wind Shear; ICAO Doc 9817 AN/449

Wind Shear

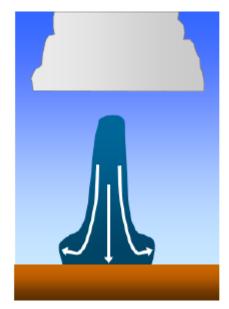
High Enough for Recovery

Landing Long and "Hot"

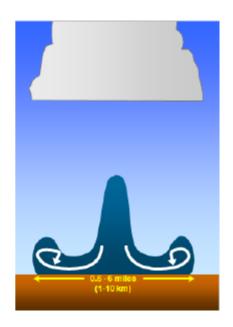
Wind Shear Accident


Credit: Wikipedia – Lufthansa-Flug 2904;
Photo: Mariusz Siecinski –
http://www.airliners.net/photo/Lufthansa/
Airbus-A320-211/0265541/L/

- September 14, 1993
- Warsaw Int. Airport
- wind shear on approach
- ground contact of right main gear after 770 m
- pilot operated wheel brake
- ground contact of left main gear after 1 525 m
- fly-by-wire systems released spoilers and thrust reversers as braking aids after left landing gear came into contact with the ground


change of software - the landing gear's touchdown pressure for releasing spoilers and reversing thrust has been reduced from 12 to 2 t for A320 family

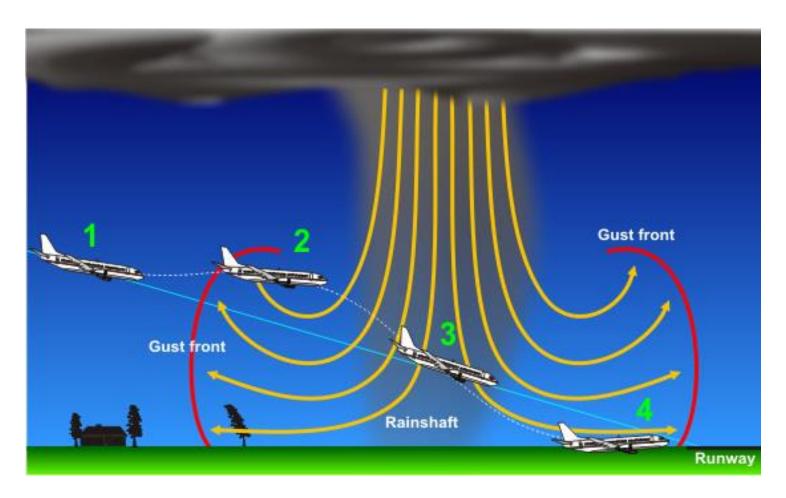
Thunderstorm – Downburst


FORMATION -

Evaporation and precipitation drag forms downdraft

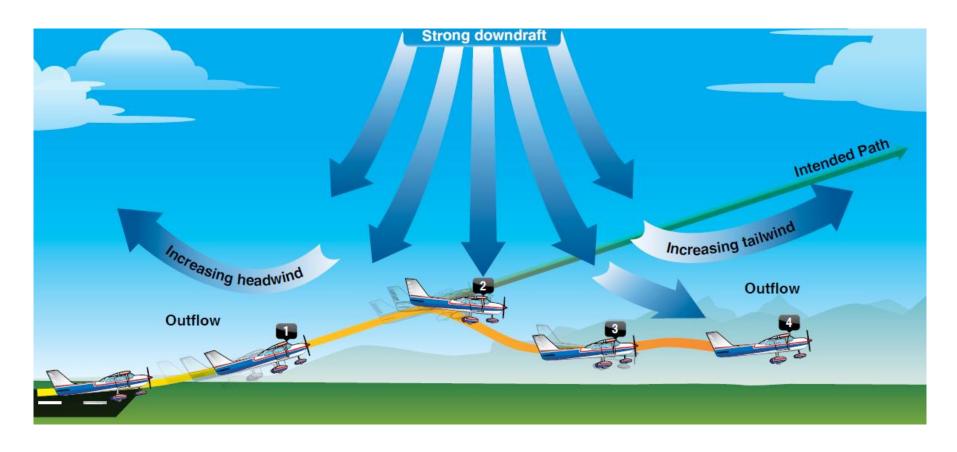
IMPACT-

Downdraft quickly accelerates and strikes the ground



DISSIPATION -

Downdraft moves away from point of impact


Credit: FAA – Advisory Circular AC No: 00-6B: Aviation Weather

Thunderstorm – Downburst

Credit: NOAA – JetStream - An Online School for Weather

Thunderstorm – Downburst

Credit: FAA – Pilots Handbook of Aeronautical Knowledge: Chapter 12 – Weather Theory

Credit: Wikipedia – Eastern Air Lines Flight 66; Original: FAA – https://lessonslearned.faa.gov/ll_main. cfm?TabID=1&LLID=67&LLTypeID=2 EUMeTrain Wind Event Week

28 February – 4 March 2022

Thunderstorm Downburst – Accident

- > June 24, 1975
- Eastern Airlines Flight 66
- severe thunderstorm at JFK
- very light rain showers, haze, zero visibility
- final approach RWY 22L
 - ✓ enter microburst wind shear
 - ✓ striking appraoch lights 730 m before threshold
 - ✓ aircraft banks to the left and burst into flames (along Rockaway Boulevard)
- deadliest crash in US-history
 - √ 107 passenger, 6 crew members died
 - √ 9 passengers, 2 crew members survived