

Extrapolated Imagery (EXIM) Evaluation of recent developments

Schmederer Polly ZAMG, Vienna, Austria

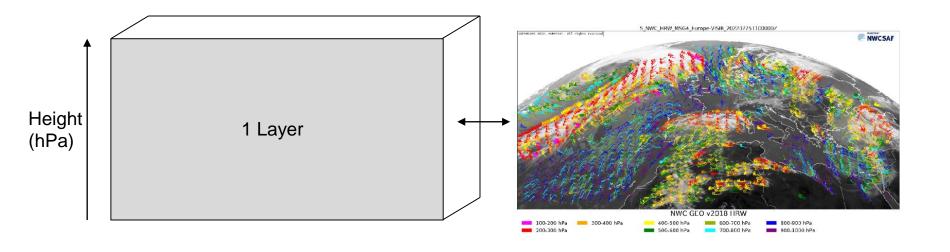
EumeTrain Wind Event Week, 2 March 2022

1. Evaluation objectives of EXIM

- "ctth effective" new sub-product in the EXIM portfolio
 - NWC/GEO "CTTH": effective cloudiness
 - user request
 - Evaluation: better than persistence
 - See Validation Report:
 GEO-EXIM-v2.0.1

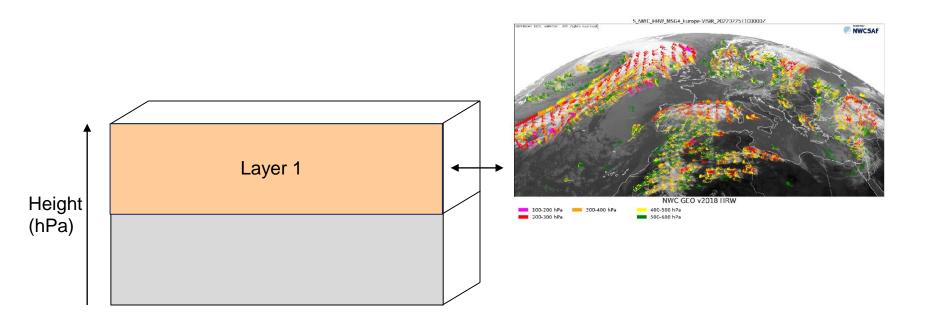
"Effective cloudiness ("ctth_effectiv") is a variable available in the diagnostic product of NWC/GEO "CTTH", apparently it is not available in EXIM.

Since you mentioned it, I'd like to suggest including it in the future as it can be helpful for some post-processing Tasks."

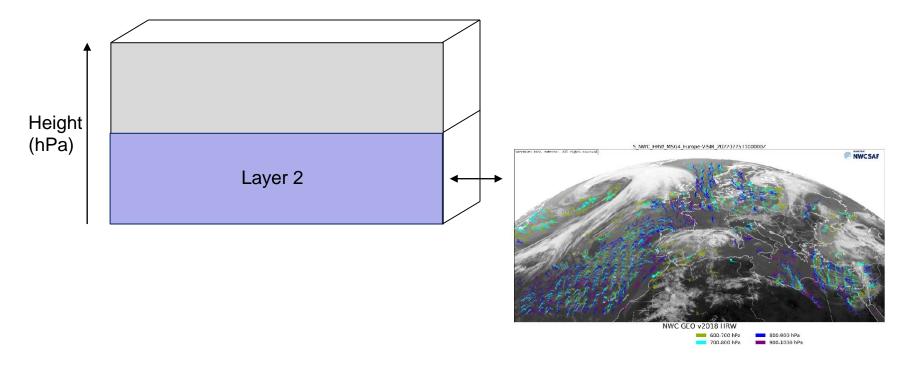

- ctth filter new feature of EXIM
 - Filtering of AMVs and pixels to extrapolate
 - Validation of nowcasts against product/ image at verification time
 - Comparison of setups using filter against control setup
- Validation period: April 2021 August 2021
- NWC SAF products: CMA, CT, CTTH altitude and effective cloudiness,

CMIC phase, PC, PCPh, CRR, CRRPh

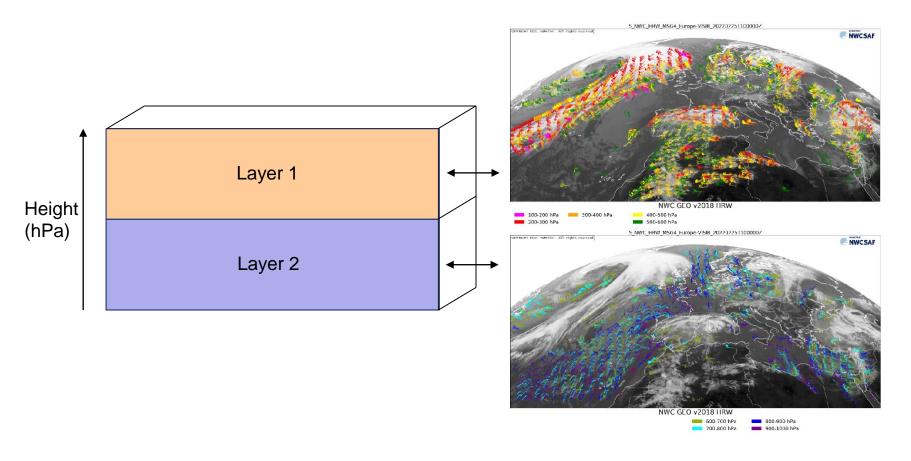
Satellite images: VIS 0.6, VIS 0.8, IR 10.8, IR 3.8



2. Default - the control setup



2. Ctth filter – high layer (**High layer**)



2. Ctth filter – low layer (**Low layer**)

2. Ctth filter – 2-layer scheme(2 layers)

2. Dichotomous scores

Probability of detection (POD)

$$POD = a / (a + c)$$

False Alarm Ratio (FAR)

$$FAR = b / (a + b)$$

Probability of False Detection (POFD)

$$POFD = b / (b + d)$$

Peirce Skill Score (PSS)

$$PSS = POD - POFD$$

Multi-categorical variables

Peirce Skill Score (PSSmc)

	observed						
		yes	no				
forecast	yes	а	b				
		Hits	False Alarms				
	no	С	d				
		Misses	Correct Negatives				

	Observed category							
Forecas ted categor y	i, j	1	2		K	Total		
	1	$n(F_1,O_1)$	n(F ₁ , O ₂)		$n(F_1, O_K)$	N(F ₁)		
	2	$n(F_2, O_1)$	$n(F_2, O_2)$		$n(F_2, O_K)$	N(F ₂)		
	K	$n(F_K, O_1)$	$n(F_K, O_2)$		$n(F_K, O_K)$	N(F _K)		
	Total	N(O ₁)	N(O ₂)		N(O _K)			

3. Control continues being the best

- Cloud type (CT), cloud microphysics (CMIC) phase
- Holistic approach including all categories
- Categories without height assignment → get lost
- → PSSmc worse than control setup

3. Control continues being the best

- VIS 0.6, VIS 0.8
- Overall no improvement
- High layer for some thresholds as good as control

VIS 0.8 POD **FAR** 1.0 0.9 0.3 0.8 0.2 -0.7 0.1 0.6 20 30 10 20 30 40 50 **POFD PSS** 1.0 0.8 0.4 0.6 0.4 0.2 0.2 0.0 0.0 20 40 20 30 50 10 30 50 10 reflectivity reflectivity

3. "2 layers" can compete with control

- IR10.8, IR3.8, CTTH altitude
- Strongly height dependent products/ satellite channels
- High/ Low perform good in their associated height
- 2 layers competitive with control

CTTH altitude **POD FAR** 1.00 0.2 0.75 0.50 no hits -0.1 0.25 0.00 2000 4000 8000 10000 6000 8000 10000 4000 6000 **PSS POFD** 1.0 1.00 0.8 0.6 no correct 0.50 0.4 negatives 0.25 0.2 0.00 4000 6000 8000 10000 4000 6000 8000 10000 2000 2000 altitudes (m) altitudes (m)

3. "High layer" and "2 layers" can compete with control

 Convective Rainfall Rate (CRR), Precipitating Clouds from Physical Properties (PCPh), CTTH effective cloudiness

Driven by high levels

PCPh POD FAR 0.6 0.8 0.5 0.4 0.6 0.3 0.4 -0.2 20 60 40 60 40 20 **PSS POFD** 0.04 1.0 0.8 0.03 0.6 0.02 0.4 0.01 0.2 0.00 -0.0 20 40 60 20 40 60 Precipitation likelihood Precipitation likelihood

Thank you for your attention!

4. Summary

- Control continues to be the best
 - Multi-categorical approach including all categories difficult to validate with some categories getting lost.
 - Visible channels on average don't improve with use of ctth filter.
- 2 layer scheme can compete
 - Precipitation and convective rainfall rates driven by high levels –
 competitive with control run in those levels.
 - Strong height dependency of some products reflected in results.
- Note: A careful selection of level boundaries according to user needs is essential and can bring advantages not shown due to the holistic approach of this evaluation.
- Results of the evaluation are summarised in a validation report: GEO-EXIM-v2.0.1

