

Wind measurements

From the green field to wind power generation

Agenda

- _Short presentation of EWS
- _ Wind energy in Austria
- _ Measurement technique
- _Important steps in project development and the significance of wind measurements
- _Summary

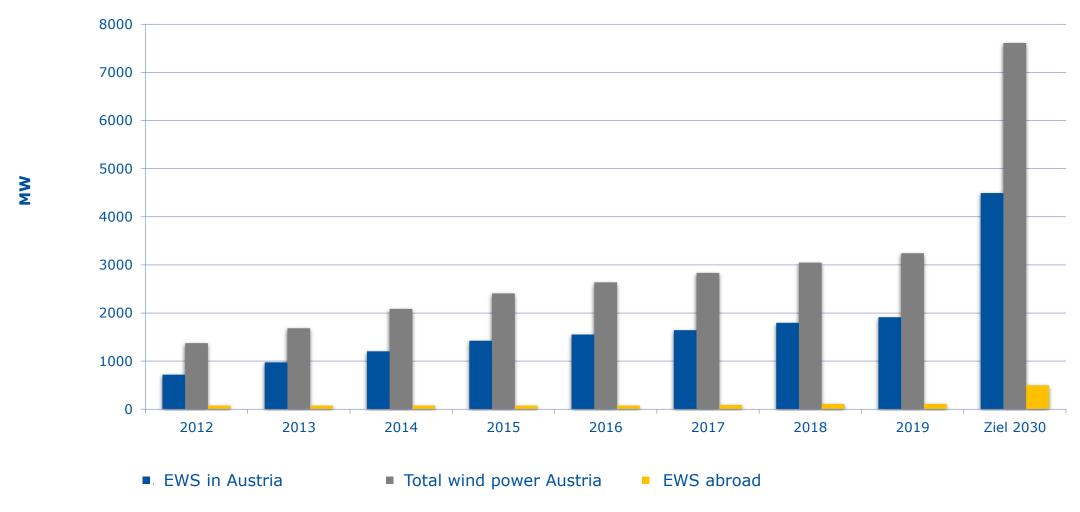
EWS - Economic Wind Power Solutions

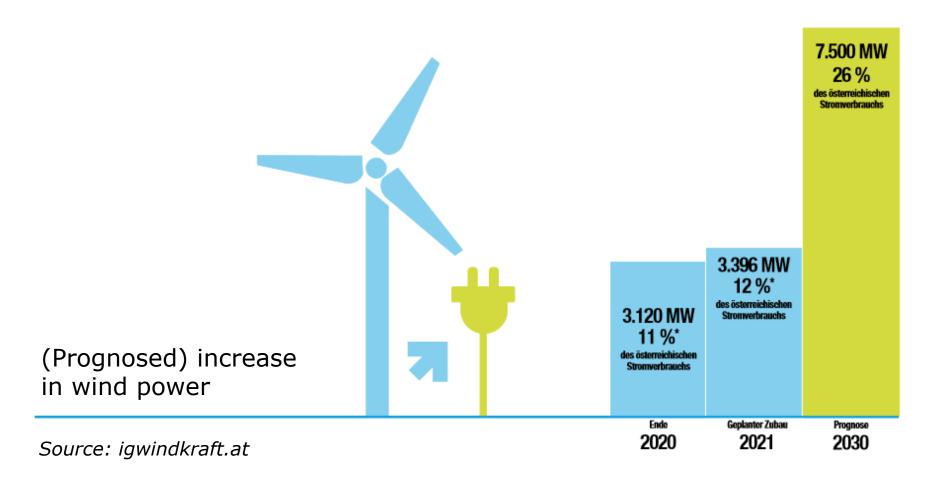
- _Company with head office in Munderfing (Upper Austria)
- _Technical services in the field of renewable energies



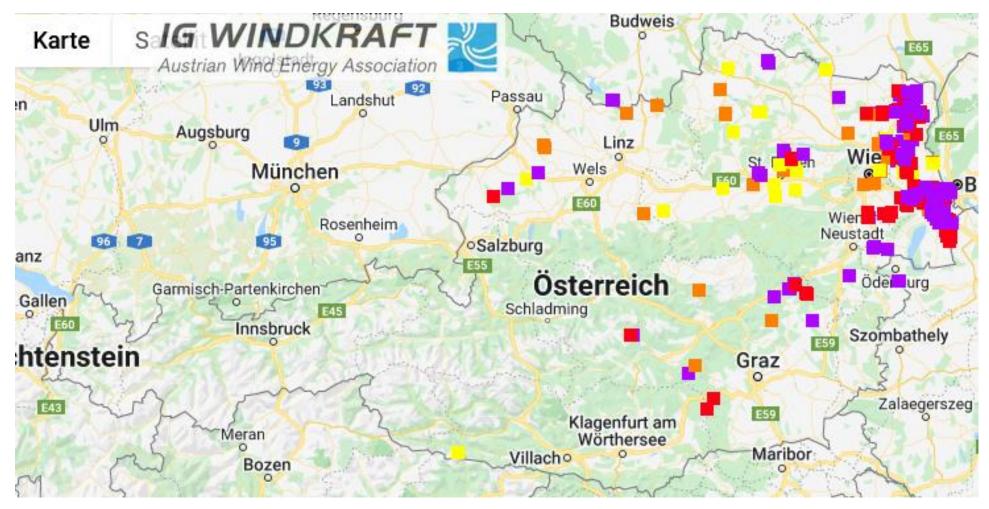
New:

EWS Wind





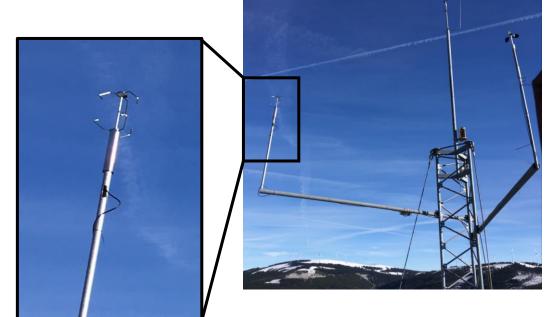
EWS Wind



Wind Energy in Austria

Until 2030: 120 WTG per year

Wind Energy in Austria


Source: igwindkraft.at

Measurement Technique

- _Cup anemometers and wind vanes
 - Anemometers: Thies First Class Advanced (X)
 - Wind vanes: Thies First Class

_Ultrasonic anemometers

- 2D and 3D
- heated

Measurement Technique

- _LiDAR devices
 - Leosphere Windcube V2/V2.1
- _SoDAR devices
 - AQSystems AQ510 Windfinder

Both of them can be used with a power trailer for autonomous power supply during the measurement (EWS Power Trailer for LiDAR)

Measurement Technique

PROs and CONs

Met mast

- + can be realised fully compliant to technical standards, well established
- + other devices e.g. for bat/bird detection can be mounted
- installation in complex areas can be tricky
- increasing hub heights are challenging

Remote Sensing Devices

- + easier installation in complex areas
- + autonomous operation can be realised relatively easy
- problems with data availability, especially in mountain areas (clean sky)
- combination with met mast recommended

Preplanning

Analysis of potential areas and feasibility study

- > spatial analyses based on wind field models (sometimes measurements)
- > already include additional criteria like infrastructure, biological/ecological aspects, zoning etc.

Planning phase I

Wind farm layout and measurement campaign

- > definition of WTG sites and types (manufacturer, machine type, hub height, power)
- > execution of precise measurements on-site

Planning phase II

Wind potential and energy yield calculations, site compliance

- > these analyses and calculations are based on reliable wind measurements
- > the "better" the measurement the lower the uncertainties of yield and site-specific wind conditions

Preplanning

Analysis of potential areas and feasibility study

- > spatial analyses based on wind field models (sometimes measurements)
- > already include additional criteria like infrastructure, biological/ecological aspects, zoning etc.

Planning phase I

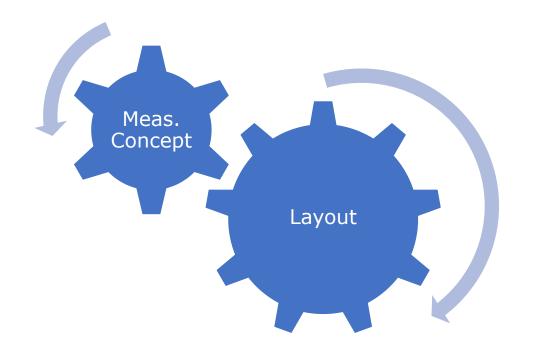
Wind farm layout and measurement campaign

- > definition of WTG sites and types (manufacturer, machine type, hub height, power)
- > execution of precise measurements on-site

Planning phase II

Wind potential and energy yield calculations, site compliance

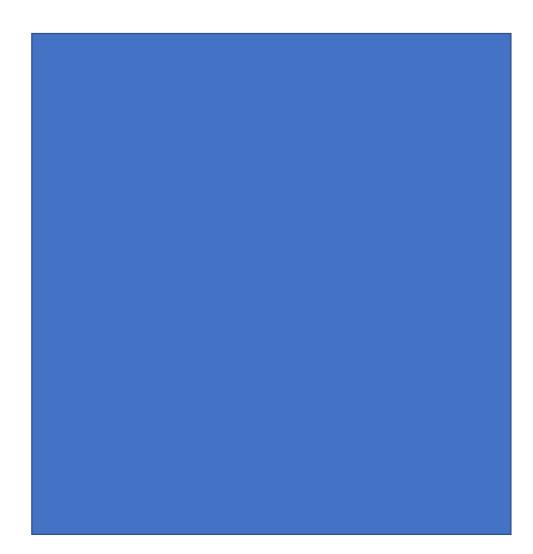
- > these analyses and calculations are based on reliable wind measurements
- > the "better" the measurement the lower the uncertainties of yield and site-specific wind conditions


The interaction between layout and measurement concept

- _ Wind measurements in the context of wind farm design are subject to several technical standards
- _ E.g. IEC 61400-12-1 Ed.2

Some of the most important criteria:

- _ Measuring period of at least 12 months with data availability of >80%
- _ RSD is recommended in combination with met mast, verification of RSD is mandatory
- _ Met mast: top anemometer has to be at least 2/3 of planned hub height
- _ Representativity: 2 km around measurement location at complex sites, 10 km at non-complex sites


The interaction between layout and measurement concept

- Changes in layout can lead to the necessity to adjust the measurement concept (e.g. more measurement locations)
- The measurement concept can reveal that an adjustment of the layout is necessary (e.g. larger hub heights)

The interaction between layout and measurement concept

It is not always that simple...

Constraints due to:

- _ Access roads
- _ Type of terrain
- _ Landed property
- Municipality borders
- _ Etc.

Preplanning

Analysis of potential areas and feasibility study

- > spatial analyses based on wind field models (sometimes measurements)
- > already include additional criteria like infrastructure, biological/ecological aspects, zoning etc.

Planning phase I

Wind farm layout and measurement campaign

- > definition of WTG sites and types (manufacturer, machine type, hub height, power)
- > execution of precise measurements on-site

Planning phase II

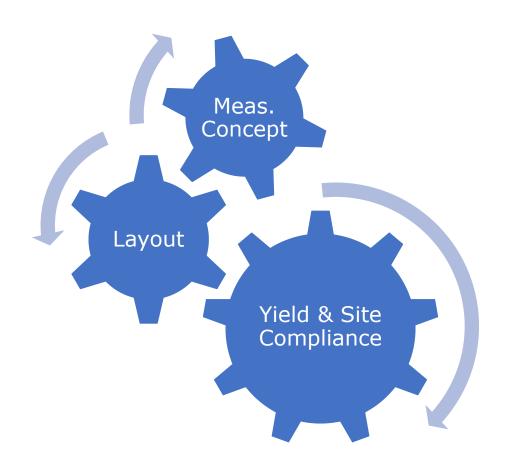
Wind potential and energy yield calculations, site compliance

- > these analyses and calculations are based on reliable wind measurements
- > the "better" the measurement the lower the uncertainties of yield and site-specific wind conditions

Procedure for yield calculations and site compliance

Wind data

- data filtering
- plausibility checks
- filling of data gaps
- comparison with other data sources


Correlation with longterm data

- correlation with different longterm data sources
- choosing the best fitting data set
- create a longterm representative site-specific wind data set

Calculations

- calculation of annual yields
- calculation of site specific wind conditions and comparison with design parameters
- quality of wind data has influence on uncertainty

The interaction between layout, measurement concept and calculations

- _ Yield and site compliance calculations can reveal that an adjustment of the layout is necessary
- _ Can have an influence on the measurement concept
- _ Iterative process

Preparatory works

- Tendering
- Construction planning
- Infrastructure, Balance of Plant, access routes

Construction

- Construction management and monitoring
- WTG commissioning
- WTG test operation and plant take-over

Operation

- Faultless power production
- Maintenance and repair works
- Under-performance and trouble-shooting

Preparatory works

- Tendering
- Construction planning
- Infrastructure, Balance of Plant, access routes

Construction

- Construction management and monitoring
- WTG commissioning
- WTG test operation and plant take-over

Operation

- Faultless power production
- Maintenance and repair works
- Under-performance and trouble-shooting

Preparatory works

- Tendering
- Construction planning
- Infrastructure, Balance of Plant, access routes

Construction

- Construction management and monitoring
- WTG commissioning
- WTG test operation and plant take-over

Operation

- Faultless power production
- Maintenance and repair works
- Under-performance and trouble-shooting

Underperformance and trouble-shooting

Three steps upon suspicion of underperformance during operation:

- Step 1: Analysis of operational data
- Step 2: Power curve and performance check using LiDAR
 - _ Quick and cheap solution, no influence on operation
- Step 3: Power curve and performance check using a met mast
 - _ Accredited service according to technical standards
 - _ Very high data quality, but more complex solution

Summary

- To reach the 2030 goal of 100% electricity from renewable energies (26% wind) reliable wind measurements are inevitable
- _ Wind measurements are crucial in several phases during project development and realisation:
 - Planning phase, possible interaction with wind farm layout (WTG location, type and hub height)
 - Basis for yield prediction and evaluation of technical feasibility
 - Important analysis tool when it comes to underperformance during operation

Thank you for your attention.

ews-consulting.com