EUMeTrain Wind Event Week 2022

Ground-based wind measurements

Friedrich Obleitner

Why wind?

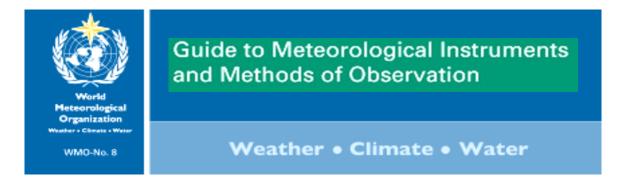
• Routine meteorology, research, aviation, air quality, hazard ...

• Vector, small scale (random, spatial & temporal) fluctuations superimposed on larger-scale organized flow

• Minimum i.e., routine information: average horizontal components

(or speed & direction)

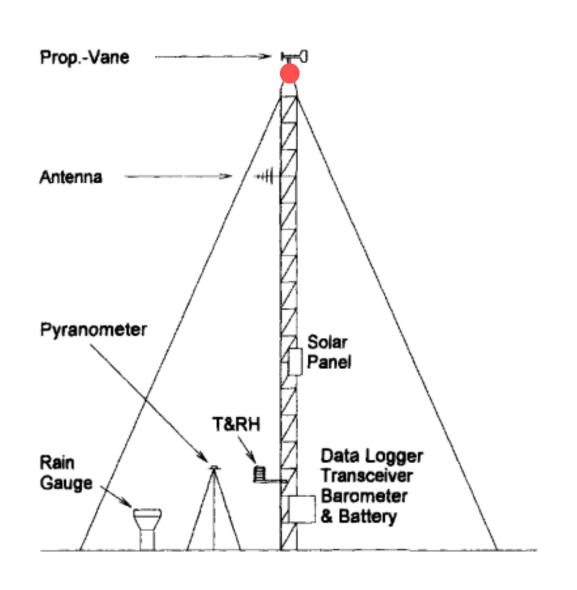
variability ("gustiness")

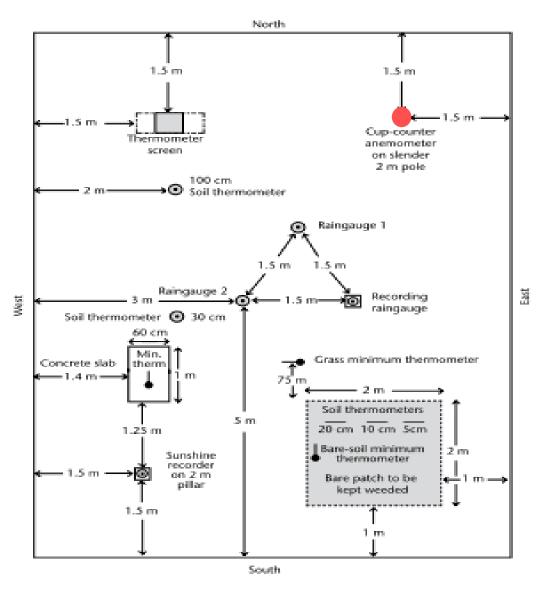

• Research: turbulence characteristics (100 Hz) (exchange processes)

Ground-Based Wind Measurements

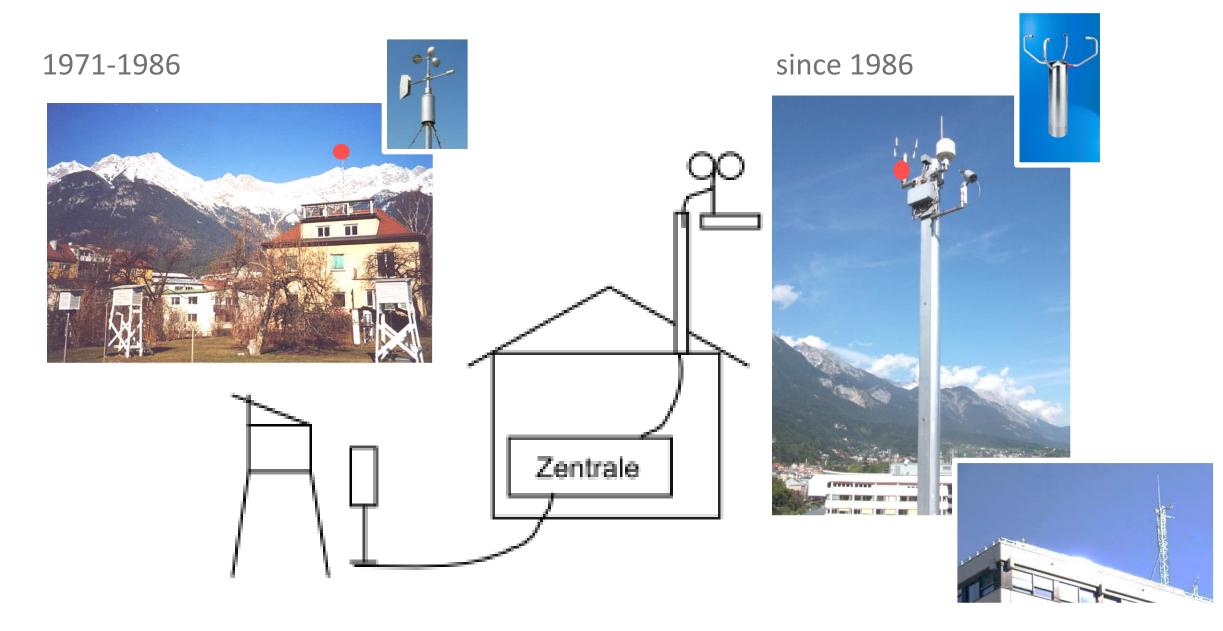
Indicators Rotating Pressure Hot wires

Sonics

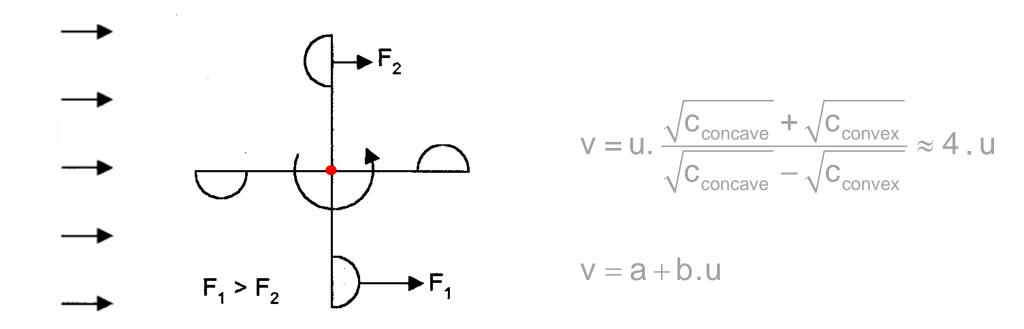



- 10 m agl. or 10 m above nearby obstacles
- 10-min averages from 1-min samples, plus standard deviation peak gust in the last full hour

(aviation, air quality: 3-sec peak gust)

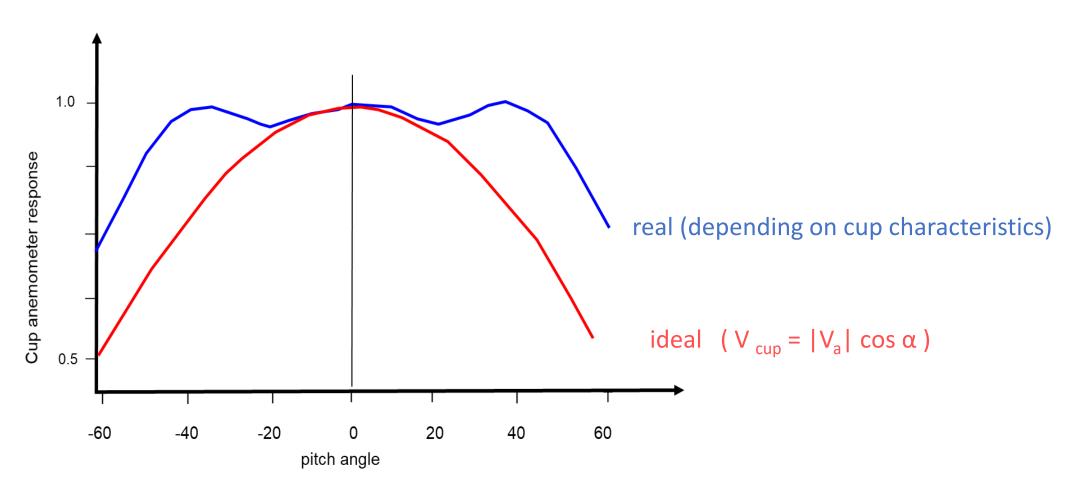

- Resolution ± 0.5 ms⁻¹; degrees to the nearest 10°
- "Calm" =: average wind speed < 1 kn (direction coded as 00).
- Can be achieved using vane and cup/propeller anemometer

WMO, EPA



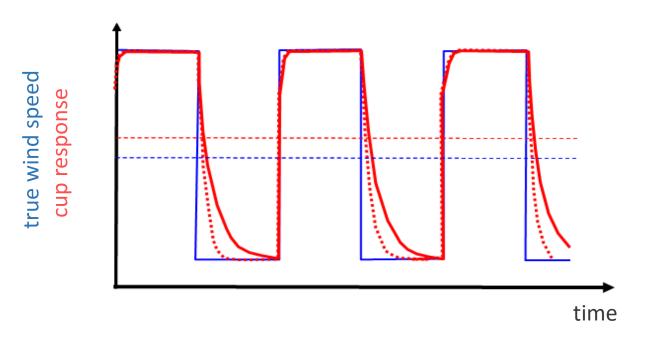
ZAMG (TAWES-UIBK)

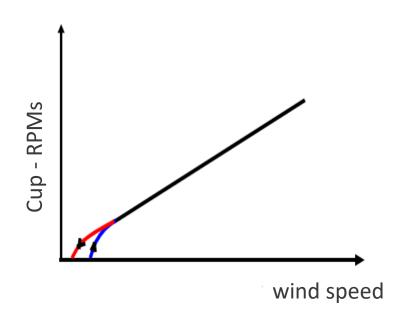
Cup anemometers


Principle

- → Robust, independent of direction, different signals to be recorded, WMO-conform
- → Need to (re-)calibrate, threshold velocity, icing, tilt effects (cosine), overspeeding

Cup anemometers

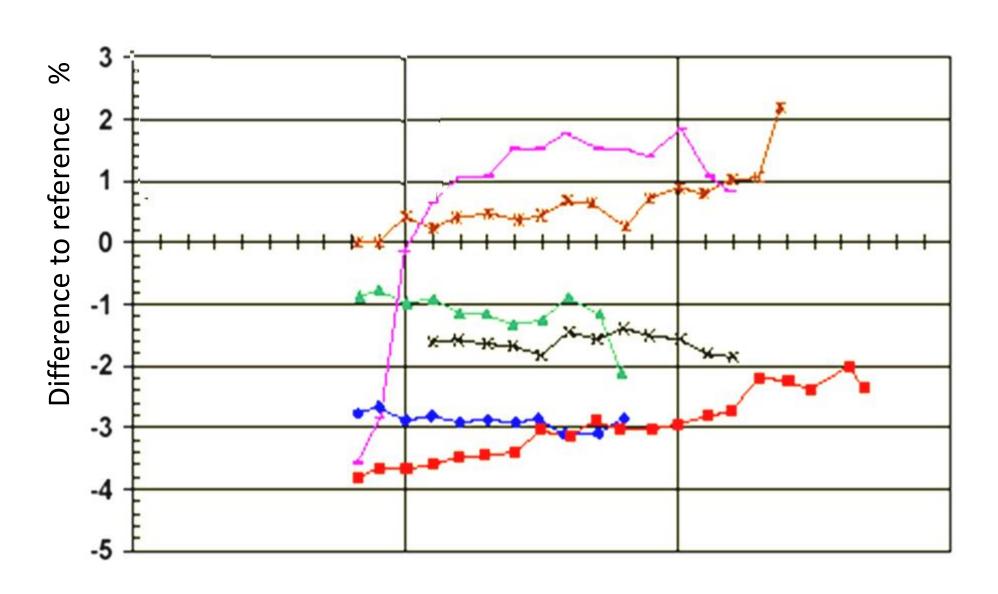

"Tilt" effects (static error)



→ Overestimation different for each sensor, align sensor horizontally; slopes ?

Cup anemometers

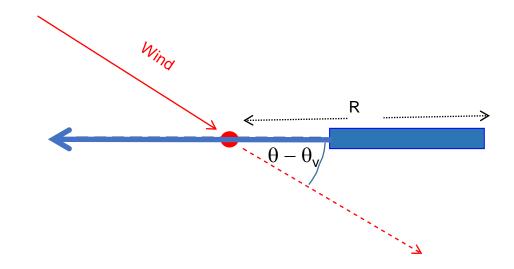
"Overspeeding" (dynamic error)


 \rightarrow Overstimation depends on: cup characteristics (mass, shape, dimensions) speed and gust characteristics

>30%, not corrected!

$$\tau = \frac{I}{\rho R^2 C_D A V_a} = \frac{\lambda}{V_a}$$

 \rightarrow Select according to needs (> τ , λ); tradeoffs (mass vs. robustnes)

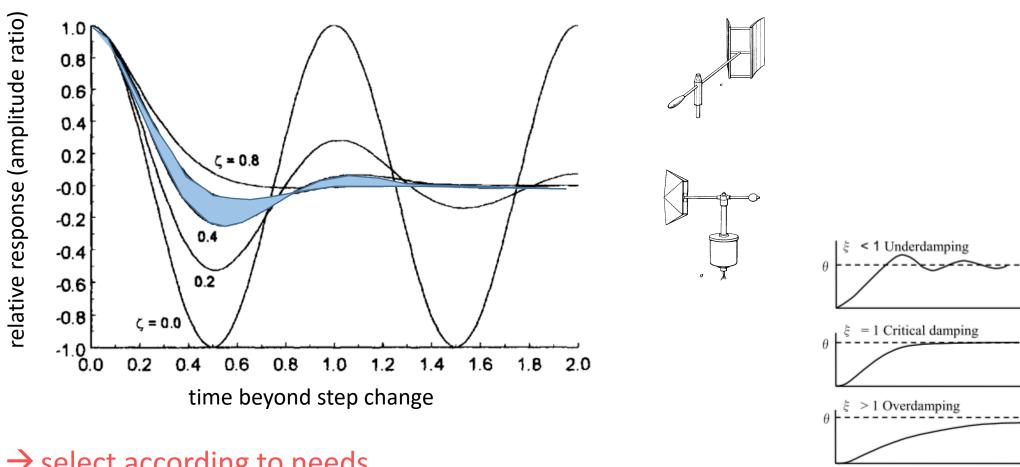

Field intercomparisons

Wind vanes

Measurement principle:

$$I.\frac{\partial^{2}\theta}{\partial t^{2}} + \frac{N.R}{v}\frac{d\theta}{dt} = -N(\theta - \theta_{v})$$

→ response depends on: mass (inertia)


dimensions and geometry, statically balanced, friction

wind speed

aerodynamic torque $N = \frac{1}{2} C_L \rho A v^2 R$

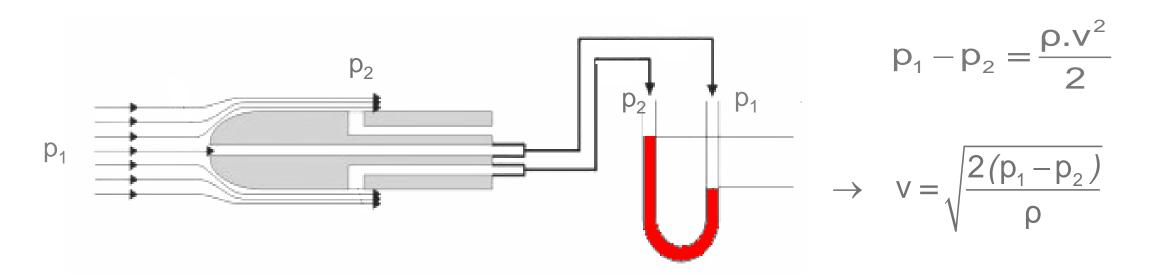
Wind vanes

Response to step changes

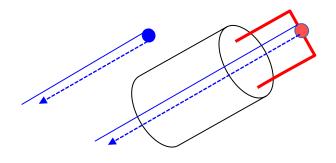
→ select according to needs

 \rightarrow WMO: $\xi \sim 0.3 - 0.7$ ("damping ratio" =: actual damping vs. critical value)

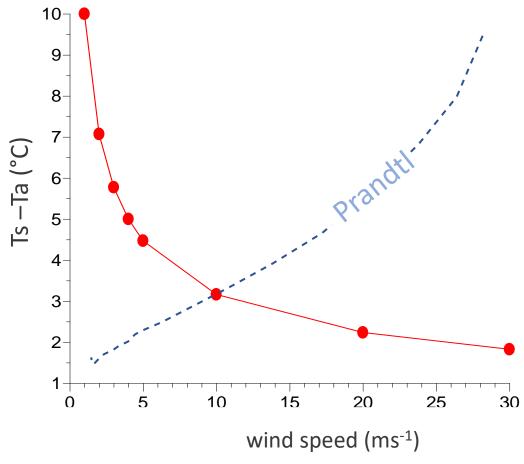
Propeller anomometer


- Combined sensor
- Measurement principle: $v = u \cot (\alpha \psi)$

- → opt for harsh alpine/marine conditions (axis torque), 3-components
- → higher threshold velocity, directional response, yaw & tilt effects (underestimates)


Pitot (Prandtl)- probe

- Robust, small, 1st-order principle i.e., reference
- Directional dependency, icing, less sensible at low velocites
- Applications: aviation (v, p, z), laboratory

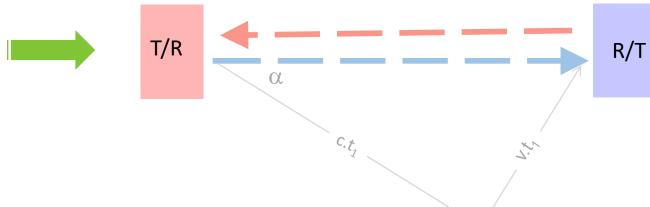

Hot wire anemometers

Measurement principle

$$P = I^2 R = \alpha_L (Ts - Ta)$$

$$\alpha_L \propto \sqrt{v} \rightarrow Ts - Ta \propto \frac{P}{\sqrt{v}}$$

- → Robust, 1st order principle i.e., reference, no moving parts
- → Sensible at low velocites, directional sensitivity, not robust, dry
- → Applications: lab, engineering, turbulence



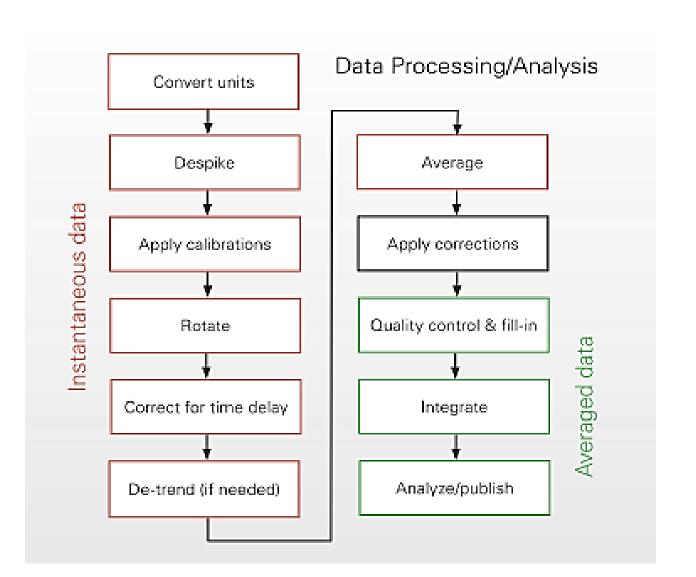
Sonic anemometers

Measurement principle:

$$t_1 = \frac{d}{c. \cos \alpha + v}$$
 $t_2 = \frac{d}{c. \cos \alpha - v}$

$$\alpha = 0^{\circ} \rightarrow v = \frac{d}{2} \left(\frac{1}{t_1} - \frac{1}{t_2} \right)$$

- → Fast response (100 Hz), low threshold, 2d or 3d components, no moving parts
- → Expensive (costs, maintenance, postprocessing)
- → Applications: lab, turbulence (w', T_v'), replacing cups


Sonic anemometers

Turbulence measurements, Eddy-Covariance Method to determine fluxes

$$\tau = -\rho \overline{w'u'}$$

$$F = \rho c_{p} \overline{w'\theta'}$$

$$L = \rho L_{v} \overline{w'q'}$$

Example cup anemometer

WIND SPEED SPECIFICATION SUMMARY

Range 0 to 50 m/s (112 mph), gust survival 60

m/s (134 mph)

Sensor 12 cm diameter cup wheel assembly,

40 mm diameter hemispherical cups

Turning Factor 75 cm (2.46 ft)

Distance Constant 2.3 m (7.5 ft) (63% recovery)

Threshold 0.5 m/s (1.1 mph)

Transducer Stationary coil, 1300 ohm nominal resistance

Transducer Output AC sine wave signal induced by rotating

magnet on cup wheel shaft 100 mV p-p at

60 rpm. 6V p-p at 3600 rpm.

Output Frequency 1 cycle per cup wheel revolution.

WIND DIRECTION (AZIMUTH) SPECIFICATION SUMMARY

Range 360° mechanical, 352° electrical (8° open)

Sensor Balanced vane, 16 cm turning radius.

Damping Ratio 0.2

Delay Distance (50% recovery) 0.5 m (1.6 ft)

Threshold 0.8 m/s (1.8 mph) at 10° displacement

Transducer Precision conductive plastic potentiometer,

10K ohm ±20% resistance 1.0% linearity,

life expectancy 50 million revolutions Rated

1 watt at 40°C, 0 watts at 125°C

Transducer Excitation Requirement Regulated DC voltage, 15

VDC max

Transducer Output Analog DC voltage proportional to wind

direction angle with regulated excitation

voltage applied across potentiometer

Example propeller anemometer

Wind speed

Range: Accuracy:

Starting threshold:

Gust survival:

Distance constant

(63% recovery): Output: 0-134 mph (0-60 m s⁻¹) ±0.6 mph (±0.3 m s⁻¹) 2.2 mph (1.0 m s⁻¹) 220 mph (100 m s⁻¹)

8.9 ft (2.7 m) ac voltage (3 pulses/ revolution) 1800 rpm (90 Hz) - 19.7 mph (8.8 ms⁻¹)

Wind direction

Electrical range: 0-360° mechanical,

355° electrical (5° open)

Accuracy: ±3°

Starting threshold

at 10° displacement: 2.0 mph (0.9 m s⁻¹) at 5° displacement: 2.9 mph (1.3 m s⁻¹)

Delay distance

(50% recovery): 4.3 ft (1.3 m)

Damping ratio: 0.25

Damped natural wavelength: 24.3 ft (7.4 m)

Undamped natural

wavelength: 23.6 ft (7.2 m)

Output:

Analog dc voltage from potentiometer - resistance $10 \text{ K}\Omega$, linearity 0.25%, life expectancy 50 million

revolutions.

Example TAWES – UIBK wind sensor

Wind speed	
Measuring range	0 85 m/s
Resolution	0.1 m/s (standard) 0.01 m/s (user defined)
Accuracy	±0.1 m/s rms (< 5 m/s) ±2 % rms (5 85 m/s)

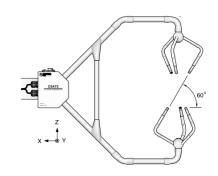
Wind direction

Measuring range	0 360 °
Resolution	1 °
	1 ° (standard)
	< 1 ° (user defined)
Accuracy	±1°@WS160 m/s
	±2°@WS 60 85 m/s

Virtual temp.

Measuring range	-50 +80 °C
Resolution	0.1 K
Accuracy	±0.5 K @ WS < 35 m/s

Example 3d-sonic anemometer


OUTPUTS: u_x , u_y , u_z , and c (u_x , u_y , u_z , are orthogonal wind components referenced to the anemometer head; c is the speed of sound)

SPEED OF SOUND: determined from 3 acoustic paths; corrected for crosswind effects

MEASUREMENT RATE: programmable from 1 to 60 Hz, instantaneous measurements; two oversampled modes are block averaged to either 20 Hz or 10 Hz

MEASUREMENT RESOLUTION: u_x and u_y are 1 mm s⁻¹ rms; u_z is 0.5 mm s⁻¹ rms; c is 15 mm s⁻¹ (0.025 °C) with embedded code version 4 (standard) [c is 1 mm s⁻¹ (0.002 °C) with embedded code version 3]; wind direction is 0.06 degrees rms. Values are the standard deviations of instantaneous measurements made of a constant signal. The noise is unaffected by the sample rate.

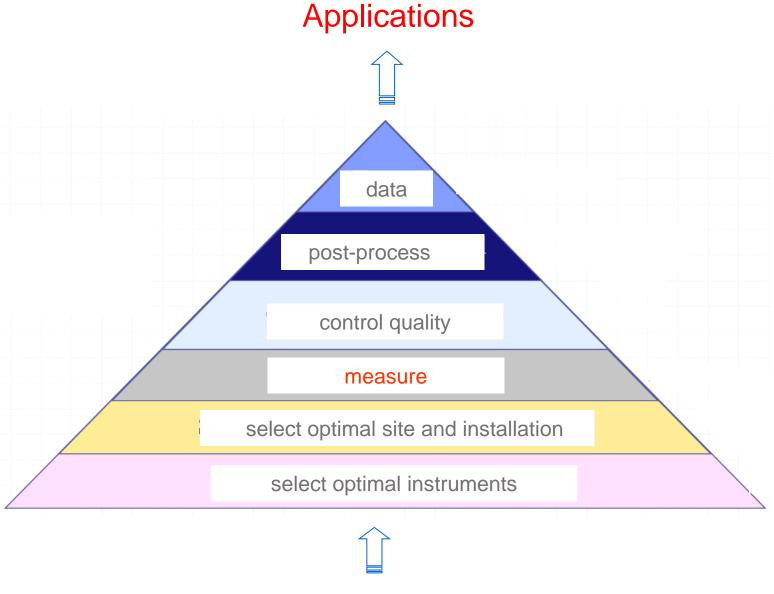
OPERATING TEMPERATURE RANGE: -30 to 50 °C (standard); -40 to 40 °C (cold shifted)

ACCURACY (-30 to 50 °C and -40 to 40 °C operating range; wind speed $< 30 \text{ m s}^{-1}$; azimuth angles between $\pm 170^{\circ}$):

Offset Error:

 u_x, u_y : $< \pm 8 \text{ cm s}^{-1}$ u_z : $< \pm 4 \text{ cm s}^{-1}$

Gain Error:


Wind vector within $\pm 5^{\circ}$ of horizontal $< \pm 2$ percent of reading Wind vector within $\pm 10^{\circ}$ of horizontal $< \pm 3$ percent of reading Wind vector within $\pm 20^{\circ}$ of horizontal $< \pm 6$ percent of reading

Wind Direction Accuracy:

±0.7° at 1 m s⁻¹ for horizontal wind

Methodical considerations

Task and Framework

Conclusions

- Choose sensors according to investigation "problem" (routine vs. turbulence)
- Watch critical specs: resolution, accuracy, power, signal, robustness

threshold, response time, distance constant, damping ratio

- Observation site: constraints, representative (WMO vs. mast along building), footprint
- Installation: minimize disturbances
- Maintenance: trade-off (manpower/power supply, heating, robustness)
- Quality control: re-calibration, post-processing
- Metadata
- Sonics have certain advantages and may replace cups [10]
- Other types of sensors play more a role in research/engineering context

References

- [1] World Meteorological Organization 2008: Guide to Meteorological Instruments and Methods of Observation, WMO-No. 8, ISBN 978-92-63-10008-5
- [2] Brock, F. and Richardson S. 2001: Meteorological measurement systems, Oxford Univ. Press, 2001, 290p.
- [3] Burba G. and D. Anderson 2010: A Brief Practical Guide to Eddy Covariance Flux Measurements: Principles and Workflow Examples for Scientific and Industrial Applications", LI-COR, Inc., 211p.
- [4] https://www.campbellsci.cc/csat3
- [5] https://www.campbellsci.com/03002-wind-sentry
- [6] https://www.campbellsci.com/05103-l
- [7] https://www.thiesclima.com/en/Products/Wind-Ultrasonic-Anemometer/?art=145
- [8] https://www.jma.go.jp/jma/jma-eng/jma-center/ric/Our%20activities/International/CP4-Wind.pdf
- [9] https://www.campbellsci.com/27106t-l
- [10] Mauder, M. and Zeeman, M. J.: Field intercomparison of prevailing sonic anemometers, Atmos. Meas. Tech., 11, 249–263, https://doi.org/10.5194/amt-11-249-2018, 2018.

Thank you!

