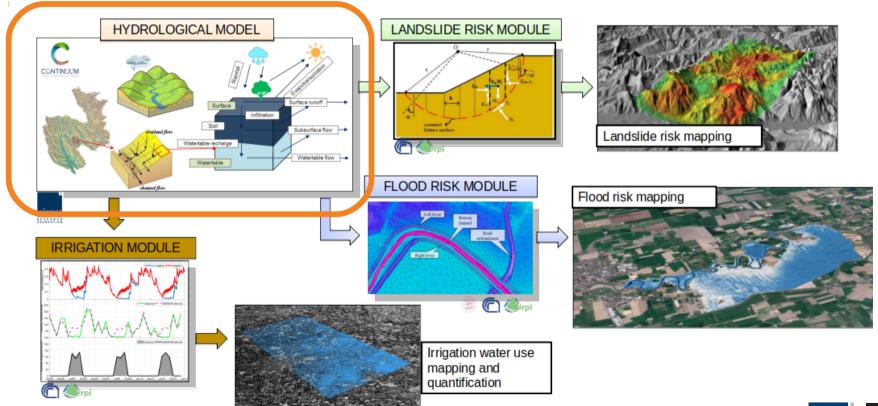
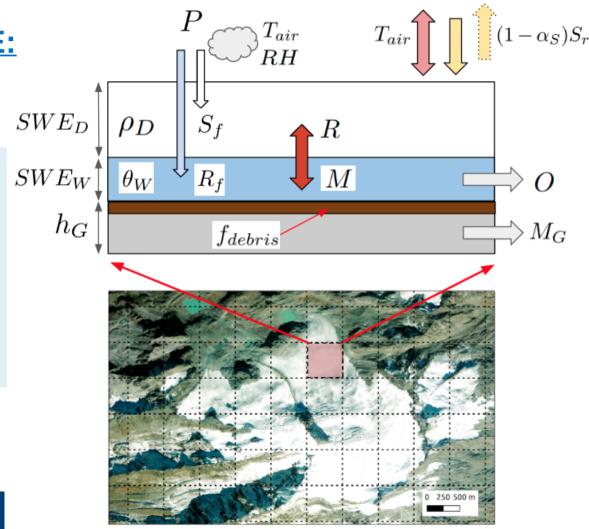


Outline

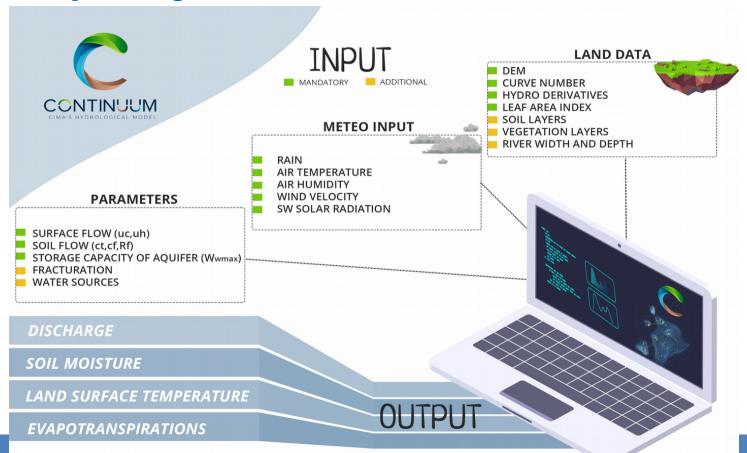

In the framework of the Destination Earth program, this work contributes to the development of a Digital Twin Earth, to highlight the potential of highresolution satellite products in monitoring the water cycle and the hydrological extremes through high resolution modeling.

- Modeling framework
- Case study description
- Model calibration
- Model simulation driven by ground observations (baseline)
- Model simulation driven by satellite products
- Model calibration with satellite products
- Conclusions

Biophysical modeling in DTE-Hydrology

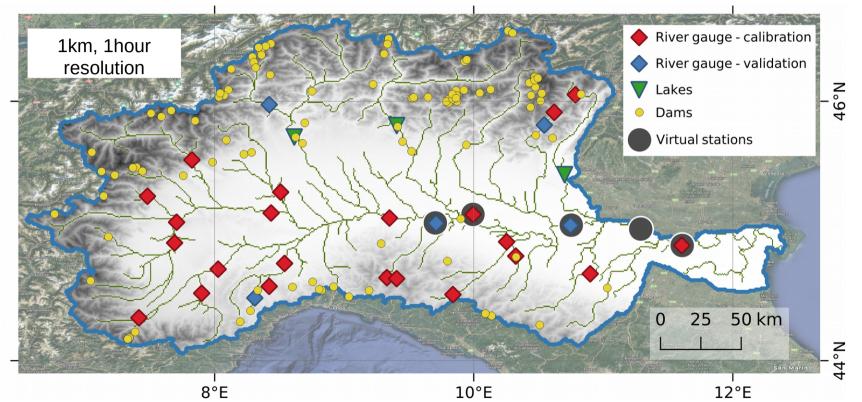

Snow modeling in DTE:

The S3M snow model

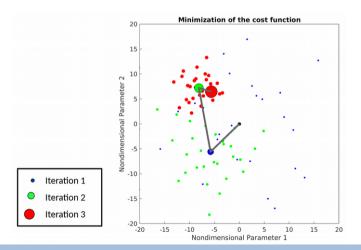

- Dry and wet snow
- Melt-freeze cycles
- Parsimonious snowmelt approach
- Explicit simulation of albedo
- Ideal for multi-source, EObased data assimilation
- Glaciers

Avanzi et al. (2021)

Geoscientific Model Development **GitHub**

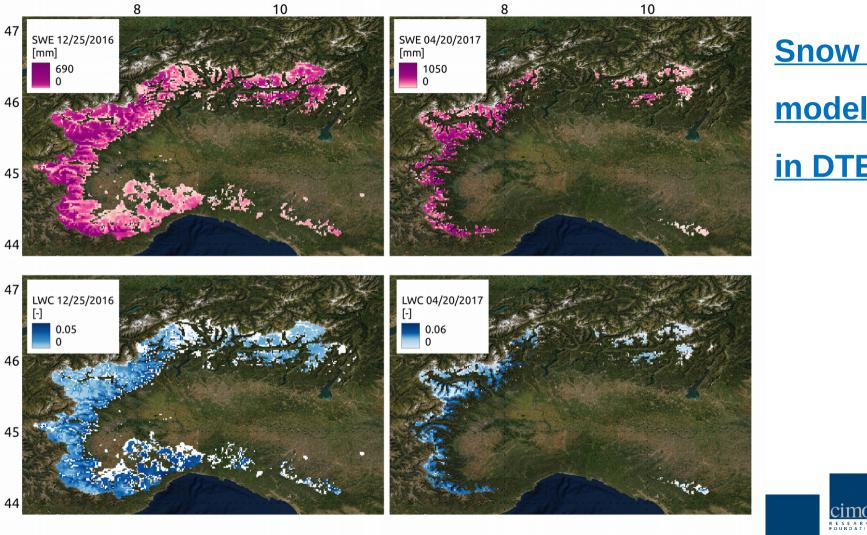

The hydrological model Continuum

Model setup



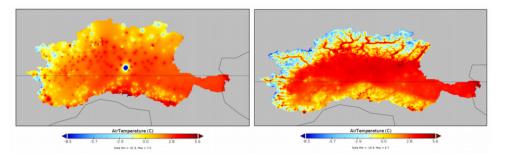
Model calibration

- In the calibration we perturbed 6 model parameters related to 4 physical hydrologic features:
- 1) infiltration velocity at saturation (ct)
- 2) field capacity (cf)
- 3) Curve Number (CN)
- 4) water sources (ws)


- 22 discharge stations
- Calibration period: 1/7/2018 - 31/12/2019(+ 6 months for model warm-up)
- Gaussian Latin Hypercube Sampling
- 20 simulations per iteration

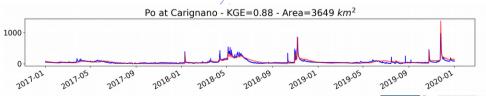
Cost function J to minimize:

$$J = \frac{\sum_{i=1}^{N_{flow}} \log(A_i) f(1 - KGE(Q_{\text{mod},i}, Q_{obs,i}))}{\sum_{i=1}^{N_{flow}} \log(A_i)}$$


modeling in DTE

Baseline run

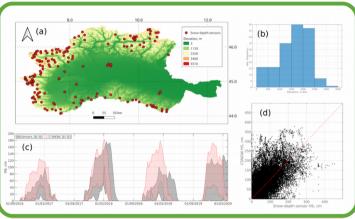
	Station	Area [km²]	KGE	r	Bias rate	CV rate	RMSE [m³/s]	ME [m³/s]
	Salsominore	171	0.06	0.61	1.85	1.10	12	4
	Cartosio	180	0.69	0.78	1.05	0.78	11	0
	Valsigiara	192	0.20	0.77	1.71	0.71	10	3
	Cimego	233	-0.03	0.00	1.00	0.75	4	0
	Ostia_Parmense	387	0.62	0.65	0.96	0.86	26	-1
	Ponte_Verdi	485	0.31	0.71	0.43	0.74	41	-14
	Ragoli	504	0.19	0.27	0.95	0.67	11	0
	Gaiola	515	0.61	0.89	0.71	1.23	9	-5
_	Lanzo	541	0.74	0.83	0.81	1.02	16	-4
Ō	Ponte_Alto	1077	0.60	0.82	1.12	0.67	24	3
Ā	Cassine	1364	-0.12	0.82	1.88	0.34	59	16
CALIBRATION	Farigliano	1379	0.80	0.84	0.95	0.88	23	-2
A	S_Secondo	1422	0.46	0.71	0.94	0.55	74	-2
O	Palestro	2168	0.67	0.88	0.81	0.76	93	-15
	Tavagnasco	3096	0.59	0.90	0.61	0.94	64	-39
	Alba_Q_A	3180	0.75	0.81	1.12	0.90	45	8
	Carignano	3649	0.88	0.89	0.97	1.05	38	-2
	Torino_Murazzi	6134	0.73	0.88	1.24	1.03	61	19
	Casale_Monferrato	12882	0.55	0.83	1.33	0.75	156	60
	Spessa	35976	0.80	0.90	0.87	1.11	333	-99
	Cremona	47616	0.69	0.89	0.83	1.23	427	-171
	Pontelagoscuro	67487	0.69	0.88	0.91	1.28	565	-123
z	Piana_Crixia	229	0.17	0.66	0.76	0.28	18	-1
VALIDATION	Ponte_dei_Tedeschi	361	0.15	0.41	0.41	0.82	14	-7
	Candoglia	1480	0.56	0.86	0.60	1.14	47	-29
5	Piacenza	39195	0.76	0.89	0.83	1.13	384	-139
>	Borgoforte	59169	0.68	0.88	0.85	1.26	521	-192
	min	171	-0.12	0.00	0.41	0.28	4	-192
	25%	436	0.25	0.71	0.81	0.74	15	-22
	median	1379	0.61	0.83	0.94	0.88	41	-2
	75%	4891	0.71	0.88	1.09	1.11	84	1
	max	67487	0.88	0.90	1.88	1.28	565	60
	mean	10781	0.51	0.75	0.98	0.89	114	-27

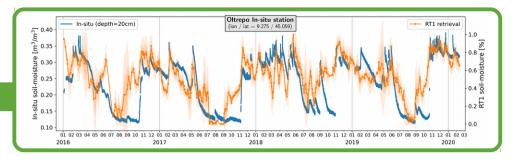

Input parameters

Radar-gauge merging (MCM)

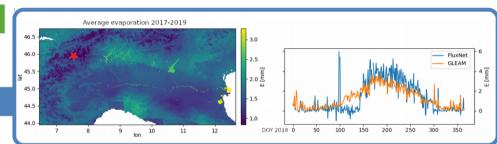
- Precipitation
- Air temperature
- Relative humidity
- Wind speed
- Solar radiation

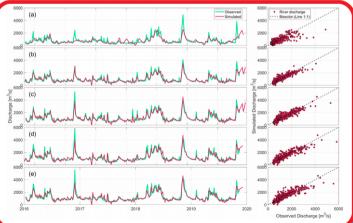
Altitude correction + outlier filtering


Inverse distance interpolation of ground measurements

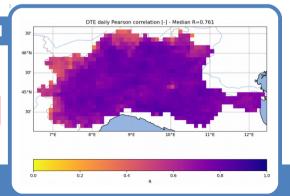


Satellite-based products




RT1

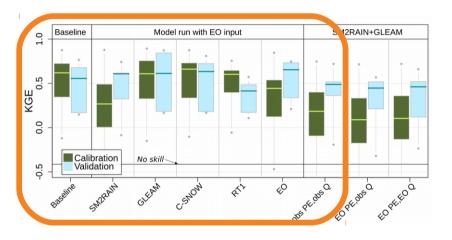
C-SNOW

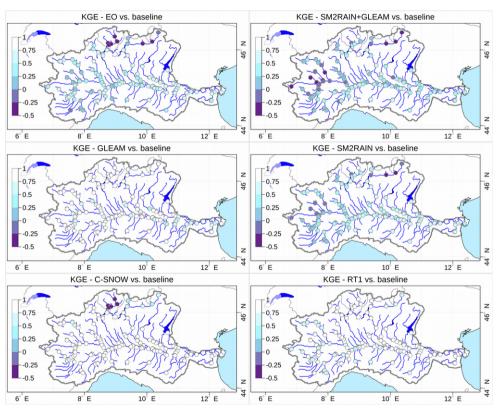

GLEAM

SM2RAIN

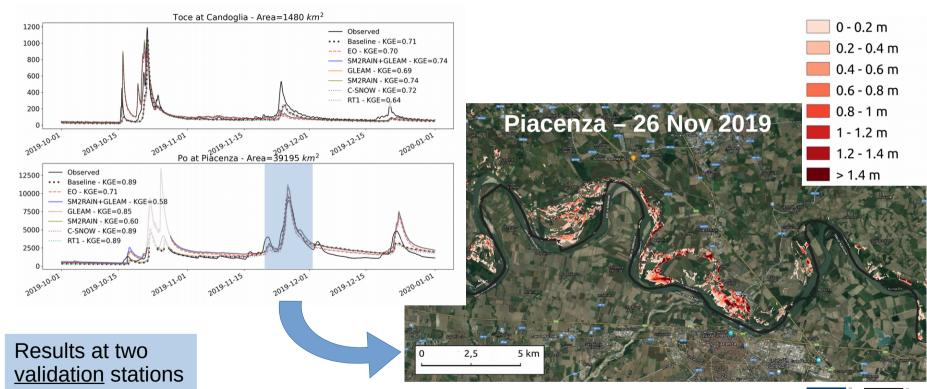
Discharge

Input

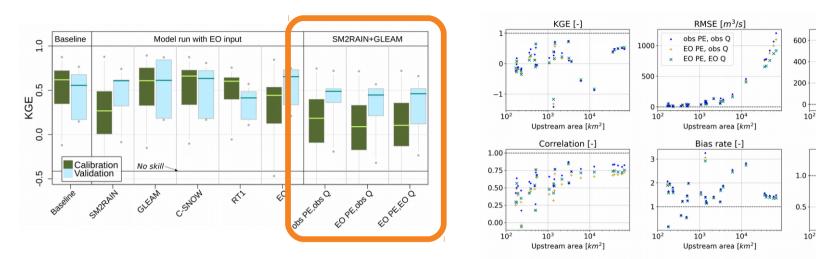

Assimilation


Benchmark data

Model runs with satellite input



Floods in October-December 2019



Satellite products for model calibration

Surprisingly high skills of hydrological simulations at the 5 validation stations

Mean error [m3/s]

Upstream area [km2]

CV rate [-]

Upstream area [km2]

104

 10^{3}

Conclusions

- Hydrological simulations driven by satellite datasets produced encouraging results, with 95% of KGE of discharges above the no-skill threshold (versus 100% for the baseline run)
- Satellite precipitation (SM2RAIN) has the largest weight on the model performance.
- GLEAM evaporation and C-SNOW snow product yielding an average 2% and 4% improvements over a baseline run driven by high-quality ground-based datasets
- Skillful results in a model calibration heavily relying on satellite products both with regard to forcing input and to benchmark discharge

Check out our discussion paper in HESS:

"High resolution satellite products improve hydrological modeling in northern Italy"

https://hess.copernicus.org/preprints/hess-2021-632/

SCIENCE AWARENESS BEHAVIOURS

www.cimafoundation.org