

The H SAF EPS-SG MWS Day-1 Machine Learning algorithm for snowfall and rainfall surface precipitation rate retrieval: Intercomparison of Machine Learning Techniques and performance analysis

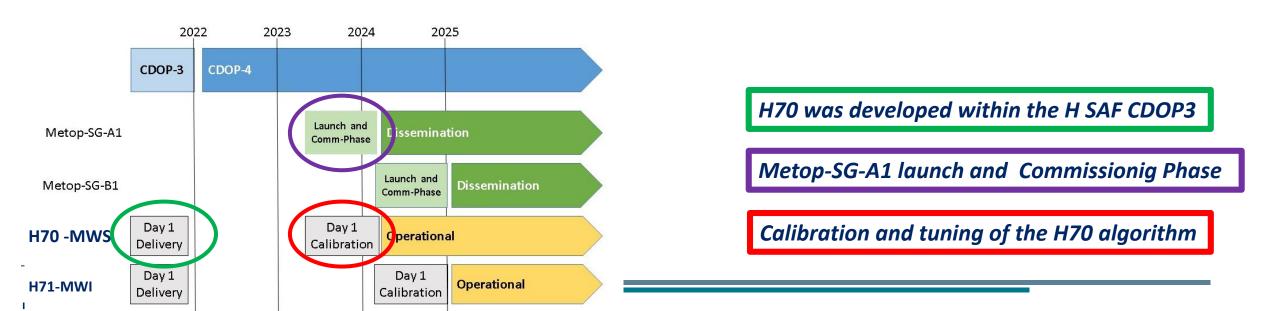
Paolo Sanò,

Daniele Casella, Andrea Camplani, Leo Pio D'Adderio, Giulia Panegrossi

Institute of Atmospheric Sciences and Climate, National Research Council of Italy (ISAC-CNR),
Rome, Italy

H SAF P-IN-MWS (H70) Precipitation Product by EPS-SG MWS

- H70 product is a Level 2 (orbital) product providing instantaneous precipitation rate, on a global scale, from the EPS-SG MWS measured brightness temperatures.
- H70, designed as the Day 1 operational precipitation product for the Metop-SG-A series, includes different modules specifically designed for the detection and estimate of rainfall and snowfall.
- H70 was developed using the ATMS cross-track radiometer, similar in terms of channel frequencies and spatial resolution to MWS which is currently not operational.
- The H70 modules are based on machine learning approach to maximize the exploitation of the channels' information.



Characteristics of Advanced Technology Microwave Sounder (ATMS) and Micro-Wave Sounder (MWS) MW radiometers

- Both are cross-track scanning
- Similar channel frequencies
- Similar spatial resolution
- Some differences in polarization

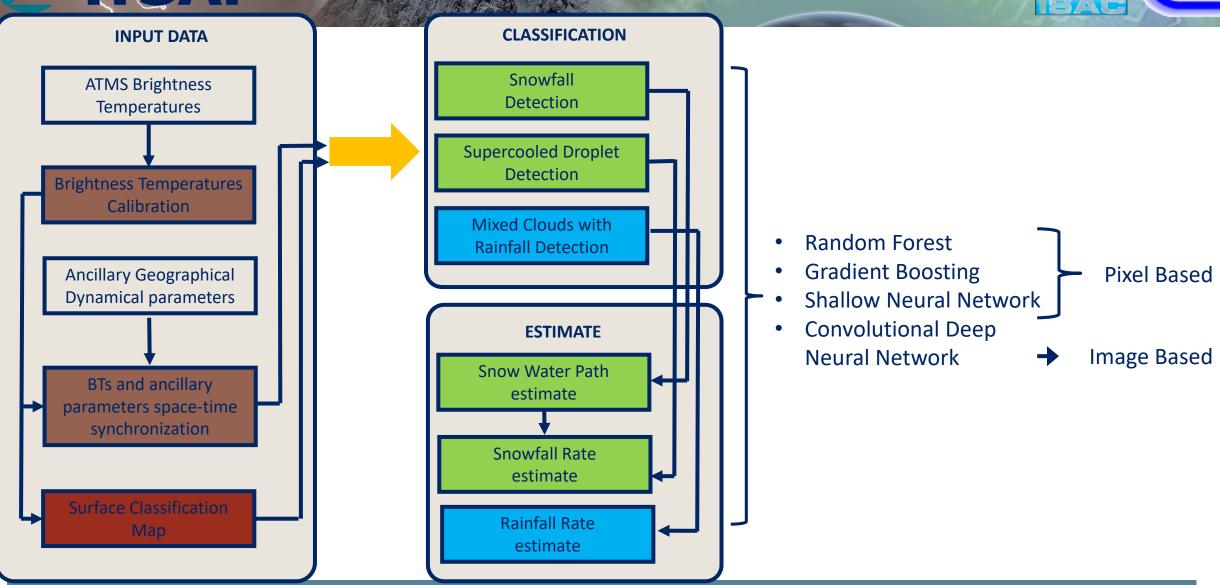
For the H70 development the channels in common between MWS and ATMS were used.

N.	ATMS Central frequency (GHz)	Pol.	MWS Central frequency (GHz)	Pol.
	23.800	QV	23.8	QH
	31.400	QV	31.4	QH
	50.300	QH	50.3	QH/QV
	51.760	QH		
	52.800	QH	52.800	QH/QV
			53.246±0.08	QH/QV
	53.596 ± 0.115	QH	53.596±0.115	QH/QV
			53.948±0.081	QH/QV
	54.400	QH	54.4	QH/QV
	54.94	QH	54.94	QH/QV
	55.5	QH	55.5	QH/QV
	57.290344	QH	57.290344	QH/QV
	57.290344±0.217	QH	57.290344±0.217	QH/QV
	57.290344±0.3222±0.048	QH	57.290344±0.3222±0.048	QH/QV
	57.290344±0.3222±0.022	QH	57.290344±0.3222±0.022	QH/QV
	57.290344±0.3222±0.010	QH	57.290344±0.3222±0.010	QH/QV
	57.290344±0.3222±0.0045	QH	57.290344±0.3222±0.0045	QH/QV
	89.5	QV	89	QV
	165.5	QH	165	QН
	183.311±7.0	QH	183.311±7.0	QV
	183.311±4.5	QH	183.311±4.5	QV
	183.311±3.0	QH	183.311±3.0	QV
	183.311±1.8	QH	183.311±1.8	QV
	183.311±1.0	QH	183.311±1.0	QV
			229.0	QV

5° H SAF User Workshop | 24-28 January 2022

EUMETSAT HSAF

H70 Algorithm flowchart



Reference Products for Rainfall and Snowfall for H70 development

Instrument	CloudSat CPR	GPM DPR		
		KaPR	KuPR	
Launch time	18 Apr 2006	27 Feb 2014	27 Feb 2014	
Altitude (km)	705	407	407	
Inclination angle (°)	98.23	65	65	
Frequency (GHz)	94	35.547	13.603	
Horizon resolution at nadir (km)	1.4 × 1.7	5	5	
Swath width (km)	1.4	120	245	
Vertical resolution (m)	500	250/500	250	
Minimum detectable Z _e (d BZ)	<-29	12 (KaHS) 18 (KaMS)	18	
Measurement accuracy (dBZ)	<2.7	<±1	<±1	

Both spaceborne radars were used as a reference for the development of the algorithm.

The GPM Dual-frequency Precipitation Radar (DPR) was used to develop the precipitation modules.

The Cloud Profiling Radar (CPR) which proved to be very effective in detecting /estimate snow was used for snowfall modules

Spaceborne radars:

- **GPM DPR (Ku/Ka band)**: better coverage (large swath but up to 65°N/S) valuable for medium/heavy precipitation conditions; low sensitivity hampers detection/quantification capabilities of light precipitation
- CloudSat CPR (W band): provides by far the most complete view of snow systems (up to 82°N/S) thanks to high sensitivity

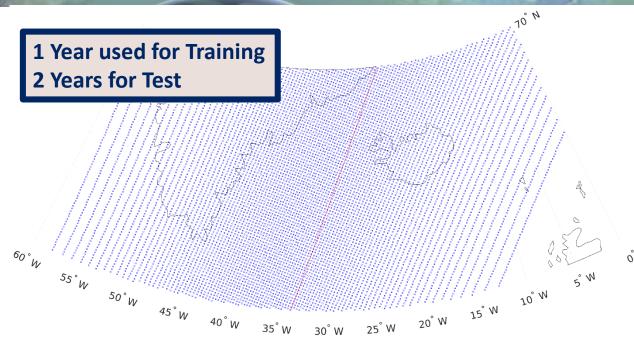
EUMETSAT ATMS-DPR and ATMS-CPR Coincidence Datasets

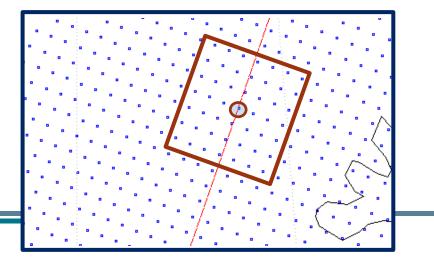
ATMS-DPR dataset

Period	2014–2016
Geographical area	Global
Number of database points	15 M
Number of database points with snowfall	2.2 M
Horizontal resolution (Km)	15.8 x 15.8 (nadir) 30 x 68.4 (scan edge)
Reference Rainfall product	2B-CMB level-2 GMI/DPR combined V06A on Ku-band radar swath (NS)

ATMS-CPR dataset

Period	2014 –2016
Geographical area	Global
Number of database points %	6.7 M
Number of database points with snowfall	1.1 M
Horizontal resolution (Km)	15.8 x 15.8 (nadir) 30 x 68.4 (scan edge)
Reference snowfall product	2C-SNOW-PROFILE (Cloudsat CPR derived
	products)

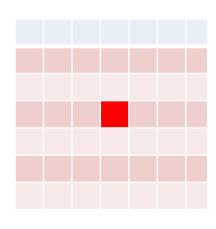




Input / Output Variables

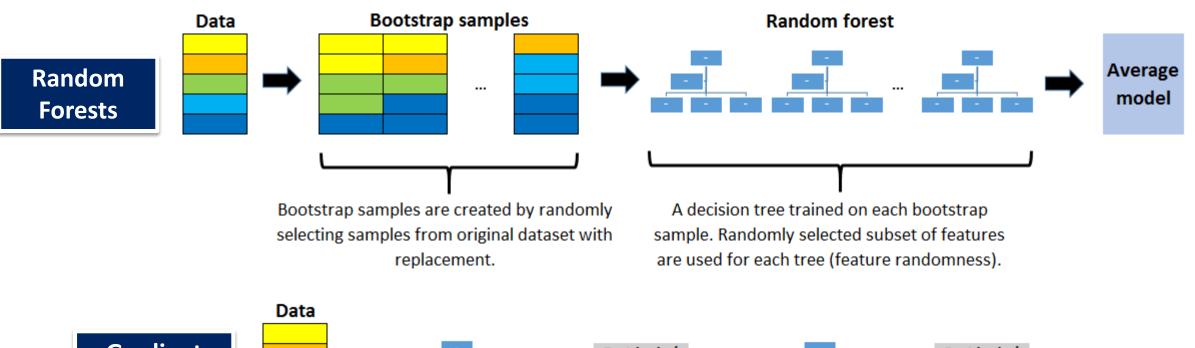
	Features	Variable in the database	Data source
	1-16	ATMS BTs	NOAA
	17	ATMS Scan angle	NOAA
	18	PESCA Surface Class	Derived
	19	Surface height	DEM
	20	2 m temperature	ECMWF-Operational
	21	Total column integrated water vapor	ECMWF-Operational
	22	Freezing level Height	ECMWF-Operational
	23-26	PCA 1-4 Temperature profile	ECMWF-Operational
	27-30	PCA 1-4 Relative humidity profile	ECMWF-Operational
	31-34	PCA 1-4 Absolute humidity profile	FCMWF-Operational
	Target		
	1	Supercooled Droplets Fraction	DARDAR (raDAR/liDAR) LATMOS-Reading Univ.
	2	Snowfall Rate	2C-SNOW-PROFILE
	2	Showidh Race	(Cloudsat CPR derived
			products)
			products
	3	Snow Water Path	2C-SNOW-PROFILE
	3	Snow Water Path	
	3	Snow Water Path	2C-SNOW-PROFILE
_	3 Target	Snow Water Path	2C-SNOW-PROFILE (Cloudsat CPR derived
	Ĭ	Snow Water Path Rainfall Rate	2C-SNOW-PROFILE (Cloudsat CPR derived

Input N	Central Freq GHz	Pol.
1	23.800	QV
2	31.400	QV
3	50.300	QH
4	51.760	QH
5	52.800	QH
6	53.596 ± 0.115	QH
7	54.400	QH
8	54.94	QH
9	55.5	QH
10	89.5	QV
11	165.5	QH
12	183.311±7.0	QH
13	183.311±4.5	QH
14	183.311±3.0	QH
15	183.311±1.8	QH
16	183.311±1.0	QH



	Pixel Based	Image Based
Features	Central Pixel	7x7 Matrix
Target	Central Pixel	Central Pixel

Machine Learning Approches: Random Forests and Gradient Boosting



Gradient
Boosting

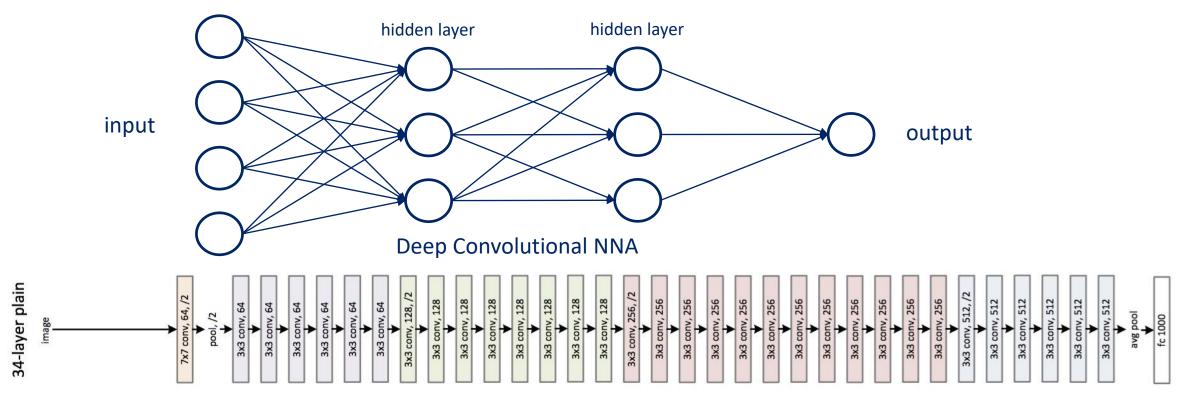
Residuals /
Wrong
Samples

Improved Model

Improved Model

Machine Learning Approches: Shallow vs Deep Neural Networks

Shallow Feed Forward NNA



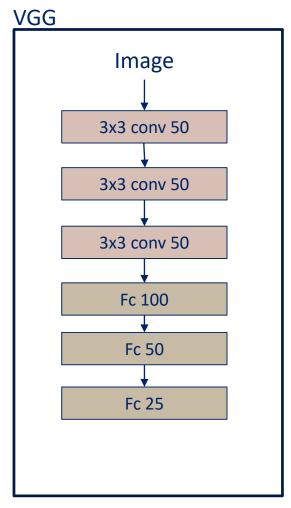
• Main Differences:

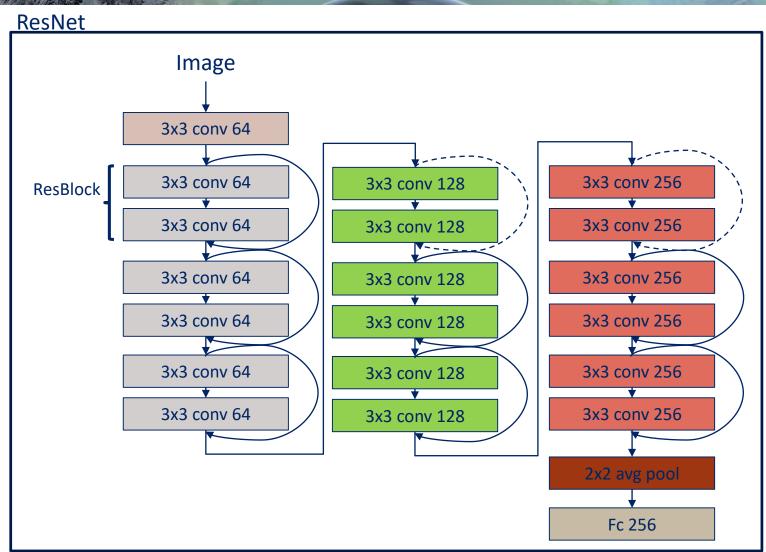
- In Deep Learning Convolutional NN only spatially contiguous inputs are connected
- N° of Levels and of parameters

1,	1,0	1,	0	0
0,,0	1,	1,0	1	0
0,,1	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Feature

Tested Deep Architectures





ML Models Intercomparison – test results

$R^2 = 1$	<u>MSE</u>
$\Lambda - 1$	\overline{VAR}
D (.	D2 4

Perfect: $R^2 = 1$

Baseline: $R^2 = 0$

Event	Event observed		
forecast	Yes	No	
Yes	a	b	
No	С	d	

Heidke Skill Score:

fractional improvement of the forecast over the standard forecast.

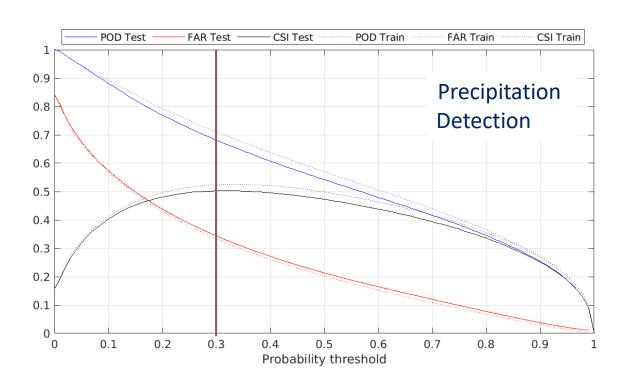
$$HSS = \frac{2(ad-bc)}{[(a+c)(c+d)+(a+b)(b+d)]}$$

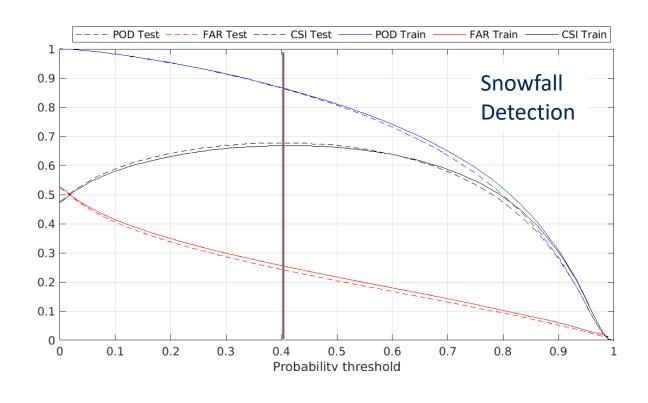
Perfect: HSS =1 No Skill: HSS=0

18 18 18 18 18 18 18 18 18 18 18 18 18 1	RandomForest	GradientBoosting	ShallowNN	VGG	ResNet
RMSE [kg/m ²]	0.078	0.090	0.050	0.055	0.072
R ²	0.955	0.940	0.981	0.978	0.961
ME [kg/m ²]	-3.66 E-03	-1.08E-02	-1.59E-05	-5 .61E-05	-1.2E-03
Corr	0.86	0.83	0.93	0.92	0.87
Number of parameters	4.00E+06	1.00E+04	3.13E+03	7.16E+04	4.34E+06

	RandomForest	RobustBoost	AdaBoost	ShallowNN	VGG	ResNet
HSS	0.62	0.61	0.61	0.66	0.68	0.64
CSI	0.67	0.66	0.66	0.69	0.70	0.67
POD	0.80	0.79	0.79	0.83	0.83	0.80
FAR	0.20	0.20	0.20	0.19	0.18	0.19
Number of parameters	2.11E+06	1.40E+04	2.20E+04	4.05E+03	5.52E+04	2.75E+05

Detection Modules

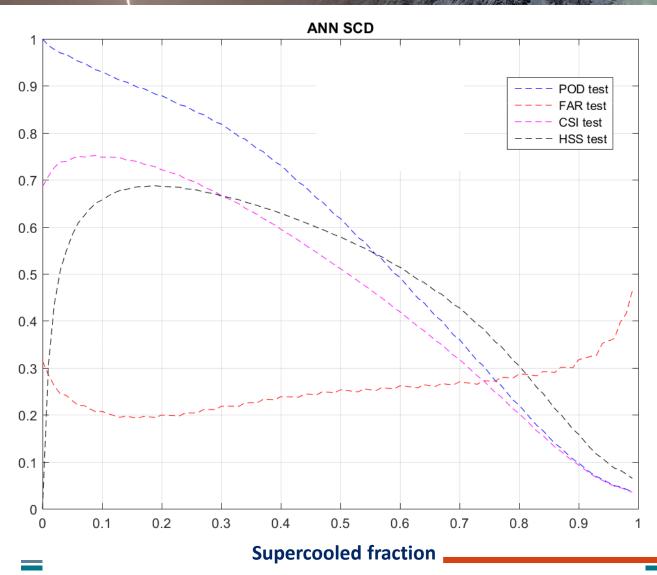




	Precipitation Detection	Snowfall Detection
Prob. Thres.	0.3	0.4
CSI	0.50	0.67
POD	0.70	0.85
FAR	0.30	0.24

The performance was tested using a two year (2014 and 2016) indipendent dataset not used in the training phase.

Supercooled Droplet Detection Module



Why Supercooled droplets detection module?

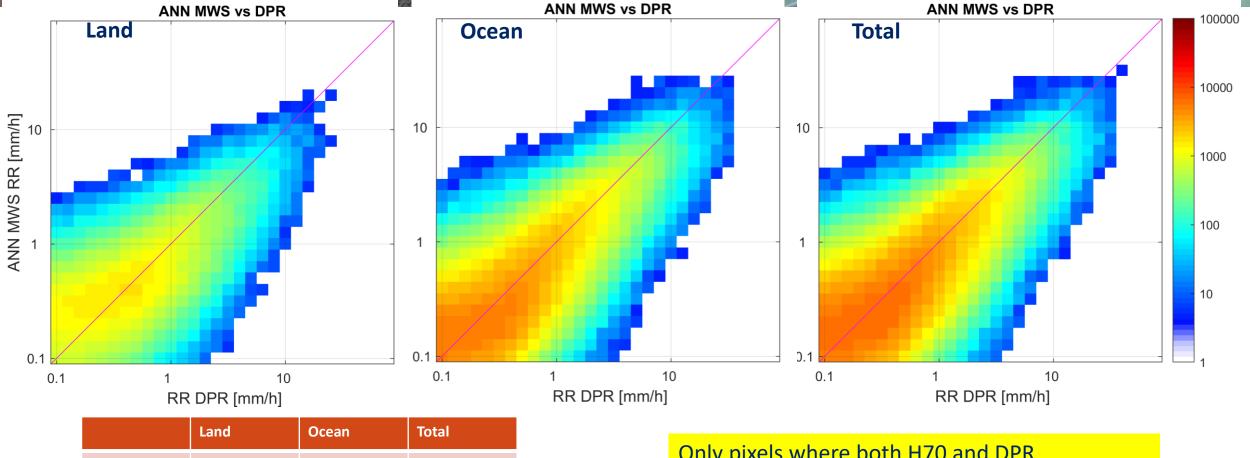
Supercooled droplets tend to partially mask scattering by snow crystals, which complicates the detection of snow using passive microwave radiometers.

Supercooled Fraction Thres.	0.19
HSS	0.70
CSI	0.73
POD	0.88
FAR	0.19

The Supercooled Fraction is the mean value of DARDAR (liDAR + raDAR) binary variable within the ATMS ifov

EUMETSAT HSAF

H70 Precipitation Rate Estimate Module

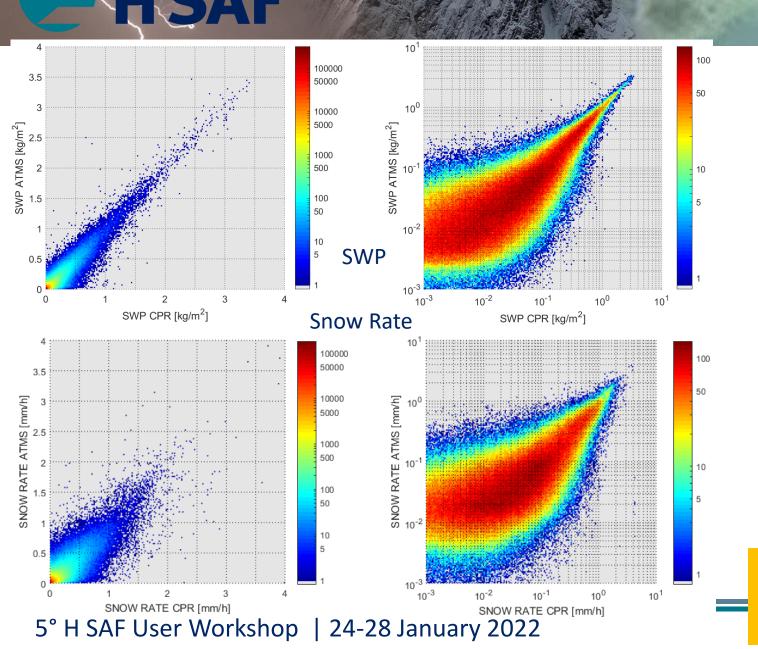


22

ME (mm/h) 0.03 0.01 0.01 CC 0.71 0.75 0.74 **RMSE** 0.97 0.98 0.98 (mm/h)397429 957058 1354487 N. Point

Only pixels where both H70 and DPR precipitation rate >0.1 mm/h (hit) were considered

H70 Snow Water Path and Snow Rate Estimate Modules



ME	0.00
СС	0.93
RMSE	0.05
N. Point	678631

The performance was tested using a two year indipendent ATMS-CPR dataset not used in the training phase.

ME	0.00
СС	0.83
RMSE	0.08
N. Point	678631

This result confirms the ability of ML approaches to learn the "truth" from CPR and extend it to the entire ATMS swath

EUMETSAT H70 and The Goddard profiling algorithm (GPROF)

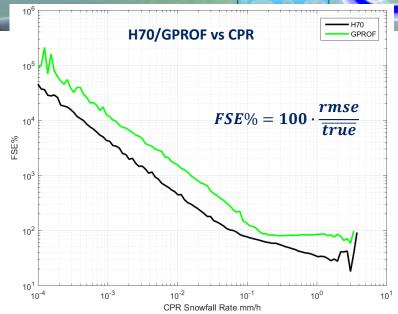
for ATMS Comparison

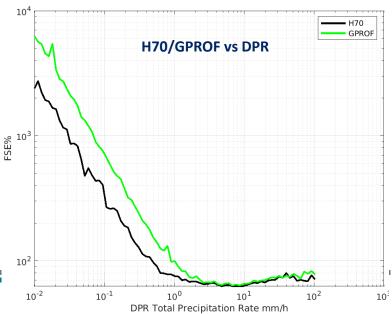
- 1. The comparison was carried out considering a two-year period (2014 and 2016 our Test Dataset).
- 2. The statistics were evaluated according to the surface classes identified by GPROF.
- 3. For the analysis with CPR (snowfall) the H70 snow rate and the GPROF Frozen Precipitation (FP> 85%) were compared.
- 4. For the analysis with DPR the H70 and GPROF total precipitation were compared.

It should be pointed out that:

- 1. In the analysis the reference is for snow 2C-SNOW-PROFILE (CPR derived products used in H70 training) and, for the total precipitation, the 2B-CMB level-2 GMI / DPR combined V06A.
- 2. GPROF uses for precipitation detection/estimate:
 The Multi-Radar/Multi-Sensor System (MRMS) data over snow covered surfaces
 The 2B-CMB level-2 GMI / DPR combined over ocean and sea ice
 The 2A-DPR (Ku band) and over Land.

	GPROF	H70	GPROF	H70	GPROF	H70
	SNOW	SNOW	OCEAN	OCEAN	LAND	LAND
RMSE	0,18	0,10	1,82	1,58	1,65	1,14
ME	0,006	0,002	0,08	0,40	0,15	-0,02
CC	0,55	0,80	0,60	0,71	0,55	0,69
POD	0,20	0,76	0,59	0,64	0,54	0,69
FAR	0,55	0,22	0,56	0,30	0,44	0,33
SHSS	0,05	0,63	0,38	0,60	0,48	0,63





Future Developments

Future activities for the MWS day-1 algorithm

- During the MWS commissioning phase the H70 calibration-tuning will be carried out.
- Some algorithm modules based on deep learning techniques could be updated in order to improve the performance. The use of Convolutional Neural Networks (Deep Learning techniques) has shown great capability in precipitation and snowfall detection applications.
- An extensive validation will be carried out to confirm the algorithm performance.

Future activities for the development of MWS day-2 algorithm

- We are also carrying out the activity aimed at the development of the MWS day-2 algorithm (planned in the CDOP4, 2022-2027).
 The main goals of the activity are to improve the light rainfall and the warm rain detection and estimate.
- For this purpose two additional machine learning modules will be developed:
 - The light rainfall detection and estimate modules
 - > The warm rain detection and estimate modules