

Satellite snow data have been used <u>in</u> <u>hydrologic models</u>:

- a) to assign model forcing
- b) to set model initial conditions
- c) as time-varying state data to constrain model predictions

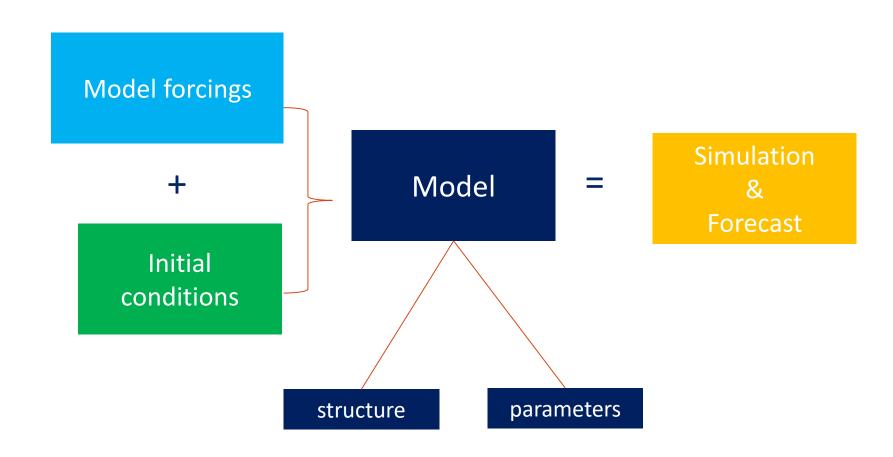
For the purpose of:

Flood, drought, forecasting, climate change, reservoir operation, etc.

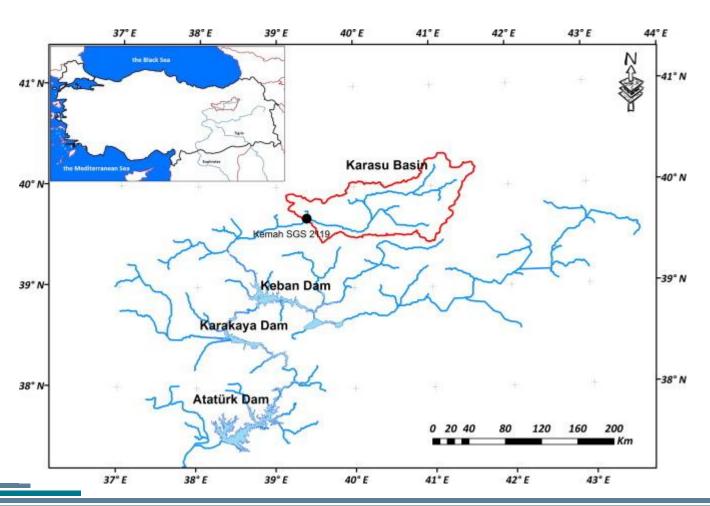
Class	Observation	Ideal Technique	Ideal Time Scale	Ideal Space Scale	Currently available data
D	Land cover/change	optical/IR	daily or changes	1km	AVHRR, MODIS, NPOESS
	Leaf area & greenness	optical/IR	daily or changes	1km	AVHRR, MODIS, NPOESS
Parameters	Albedo	optical/IR	daily or changes	1km	MODIS, NPOESS
	Emissivity	optical/IR	daily or changes	1km	MODIS, NPOESS
	Vegetation structure	lidar	daily or changes	100m	ICESAT
	Topography	in-situ survey, radar	changes	1m-1km	GTOPO30, SRTM
Forcings	Precipitation	microwave/IR	hourly	1km	TRMM, GPM, SSMI, GEO-IR, NPOESS
	Wind profile	Radar	hourly	1km	QuickSCAT
	Air humidity & temp	IR, microwave	hourly	1km	TOVS, AIRS, GOES, MODIS, AMSR
	Surface solar radiation	optical/IR	hourly	1km	GOES, MODIS, CERES, ERBS
	Surface LW radiation	IR	hourly	1km	GOES, MODIS, CERES, ERBS
	Soil moisture	microwave, IR change	daily	1km	SSMI, AMSR, SMOS, NPOESS, TRMM
	Temperature	IR, in-situ	hourly-monthly	1km	IR-GEO, MODIS, AVHRR, TOVS
States	Snow cover or SWE	optical, microwave	daily or changes	10m-100m	SSMI, MODIS, AMSR, AVHRR, NPOESS
	Freeze/thaw	radar	daily or changes	10m-100m	Quickscat, IceSAT, CryoSAT
	Ice cover	radar, lidar	daily or changes	10m-100m	IceSAT, GLIMS
	Inundation	optical/microwave	daily or changes	100m	MODIS
	Total water storage	gravity	changes	10km	GRACE
Fluxes	Evapotranspiration	optical/IR, in-situ	hourly	1km	MODIS, GOES
	Streamflow	microwave, laser	hourly	1m-10m	ERS2, TOPEX / POSEIDON, GRDC
	Carbon flux	In-situ	hourly	1km	In-situ
	Solar radiation	optical, IR	hourly	1km	MODIS, GOES, CERES, ERBS
	Longwave radiation	optical, IR	hourly	1km	MODIS, GOES
	Sensible heat flux	IR	hourly	1km	MODIS, ASTER, GOES

Table 1. Characteristics of remotely sensed hydrological observations potentially available within the next decade. (Houser et al, 2012)

- Daily snow cover area (SCA) and snow water equivalent (SWE) data sets derived from SE-E-SEVIRI(H10) and SWE E(H13), respectively, are evaluated over the mountainous terrain of Eastern Turkey.
- Impact of the snow recognition product is analyzed.
- Hydro-validation of both data sets are assessed through conceptual models (SRM and HBV).
- Assimilation of snow products are shown to improve snow states of the models and lead time runoff forecasts.



Study Area: Upper Euphrates Basin, Turkey



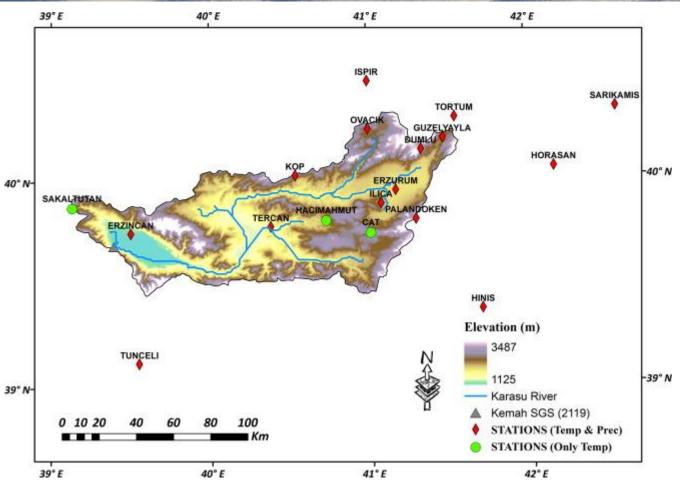
Upper Euphrates Basin (Karasu), Turkey:

Area: 10,275 km²

Elevation between 1125 and 3487 m

Mean average discharge: 84.4 m³/s

Hydro-Meteorological Data

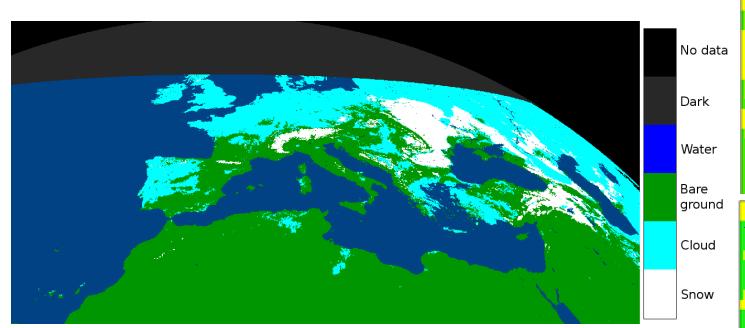


Daily total precipitation

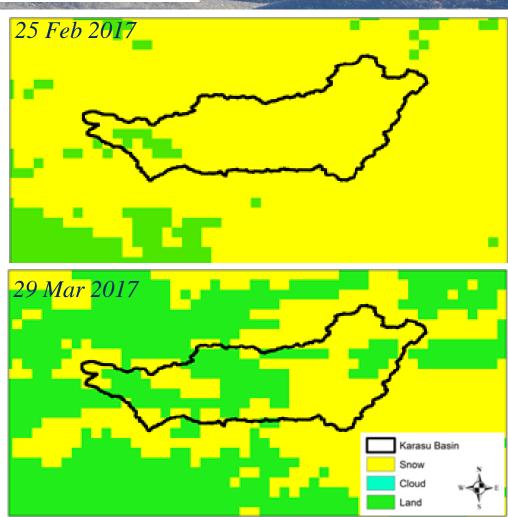
Daily average temperature

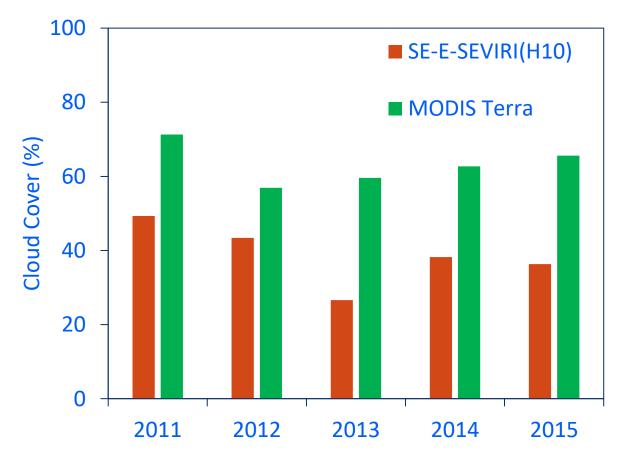
Daily average runoff

Satellite Snow Data: SE-E-SEVIRI(H10), Snow Cover Area

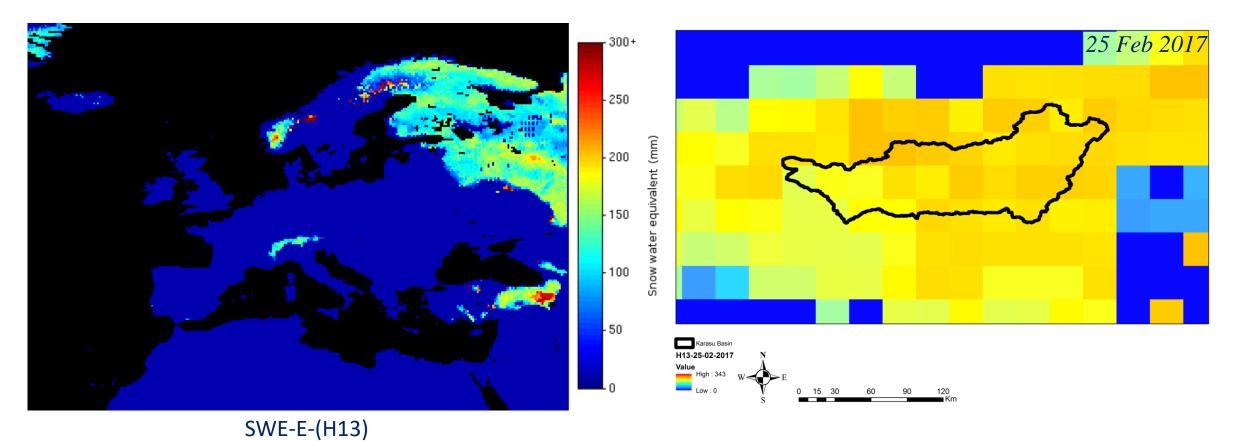


SE-E-SEVIRI(H10)

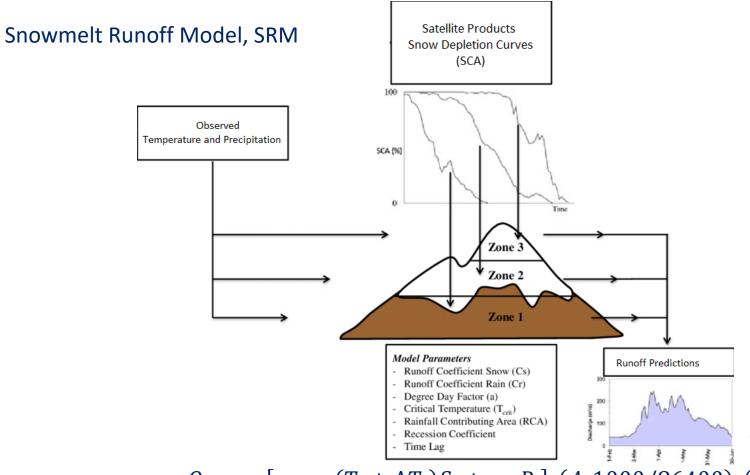




Satellite Snow Data: SWE-E-(H13), Snow Water Equivalent



Methodology



SRM Model

Forcing (model inputs):

- Precipitation (P)
- Temperature (T)
- Snow Cover Area (SCA)

Output variables:

- Discharge (Q)

(Martinec et al., 2008)

 $Q_{t+1} = [c_{St}. a_t (T_t + \Delta T_t) S_t + c_{Rt} P_t]. (A. 1000/86400). (1 - k_{t+1}) + Q_t k_{t+1}$

HBV Model

Forcing (model inputs):

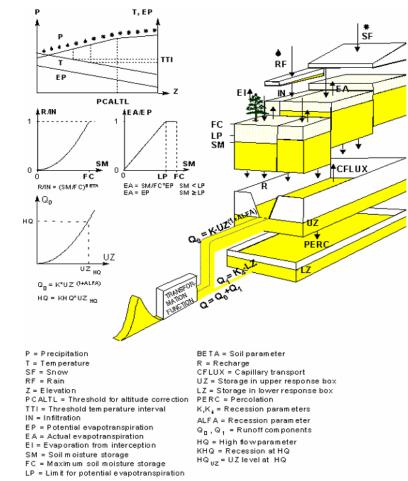
- Precipitation (P)
- Temperature (T)
- Evapotranspiration (EP)

State variables:

- Snow water equivalent (SWE)
 (snow pack SP + water content WC)
- Interception storage (IC)
- Soil moisture (SM)
- Upper zone storage (UZ)
- Lower zone storage (LZ)

Output variables:

- Discharge (Q)



ANN Model

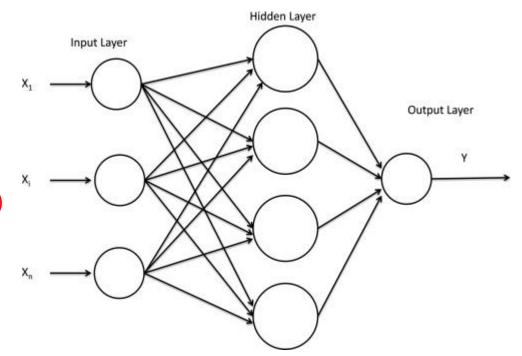
ANN Model

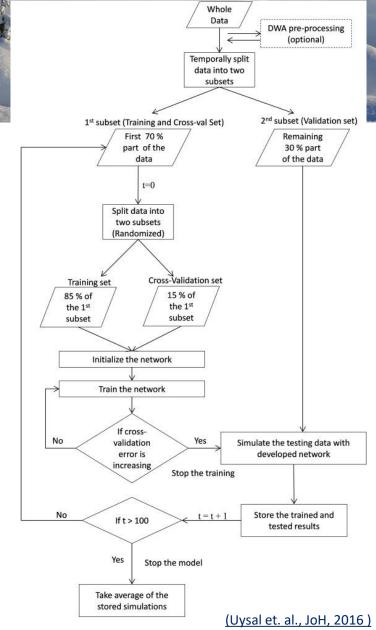
Forcing (model inputs):

- Precipitation (P)
- Temperature (T)
- Snow Cover Area (SCA)

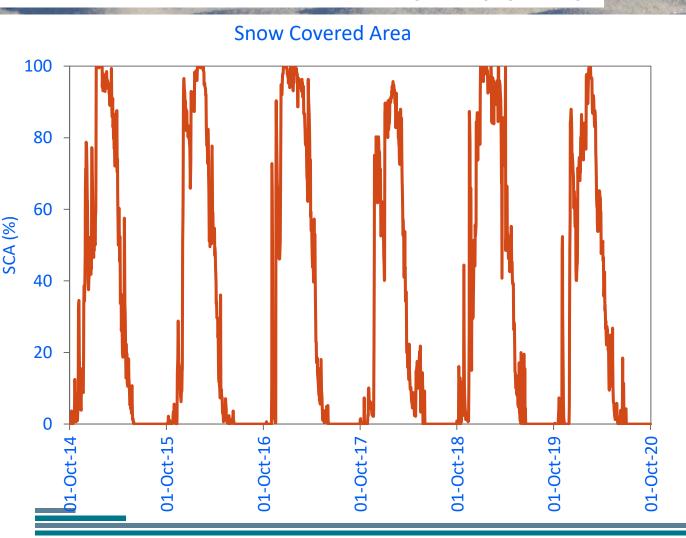
Output variables:

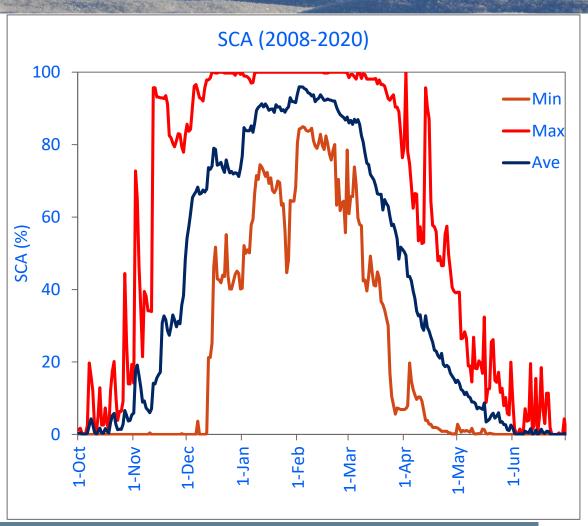
- Discharge (Q)



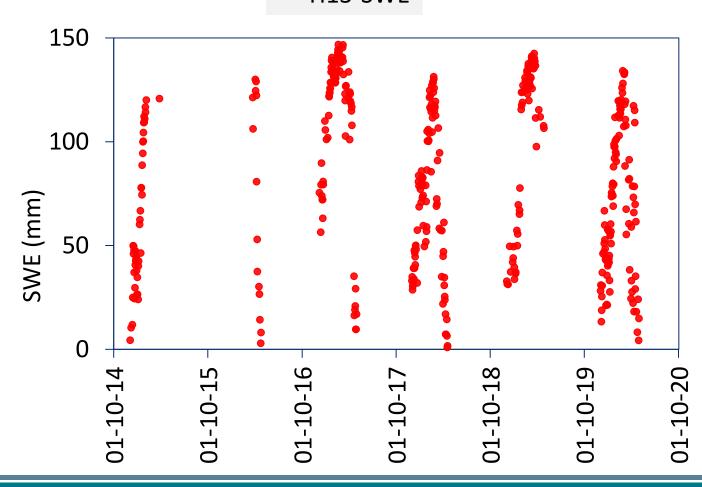


Time series of SE-E-SEVIRI(H10) (SCA)

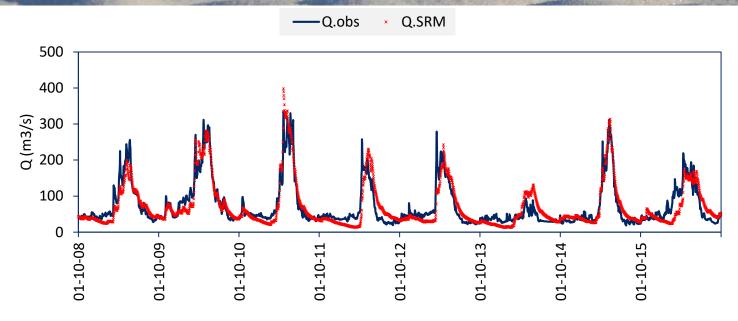




Time series of SWE-E-(H13) (SWE)

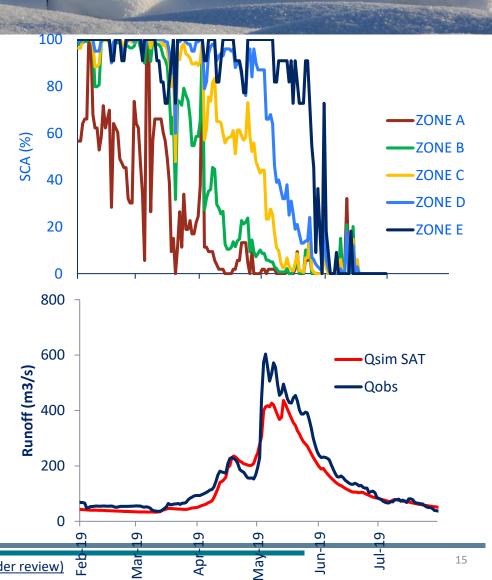


Impact study with SRM for SE-E-SEVIRI(H10)

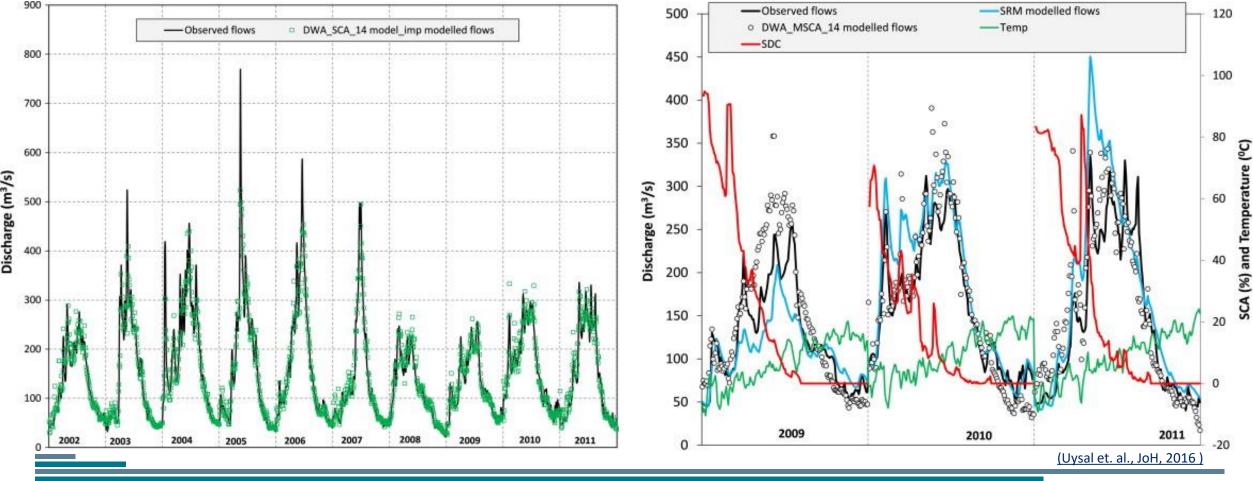


	Years	KGE	P-Bias (%)
Cal	2008-2012	0.85	-5.9
Val	2013-2019	0.82	0.8

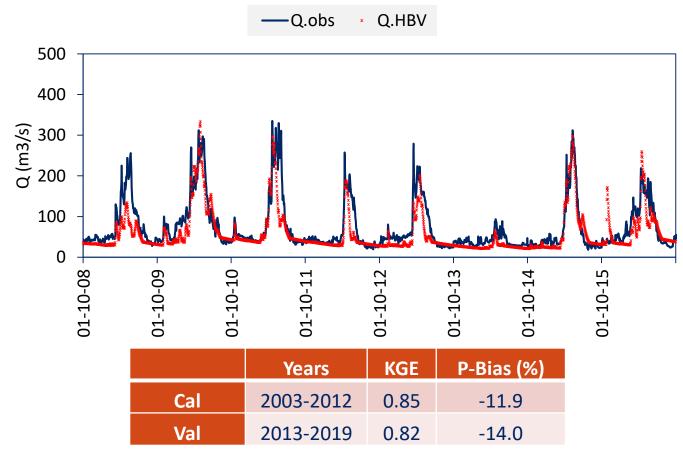
$$KGE = 1 - \sqrt{(R-1)^2 + (\beta - 1)^2 + (\alpha - 1)^2}$$



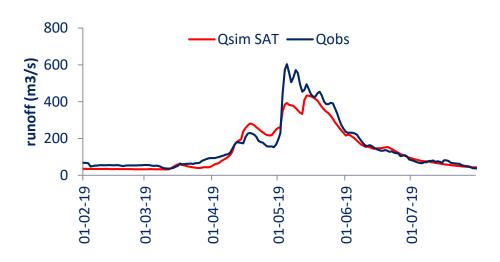
Impact study with ANN



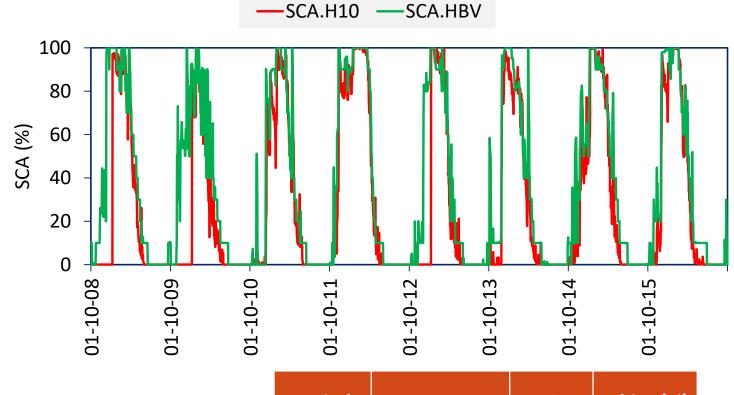
Hydro-validation study with HBV



Discharge, Q



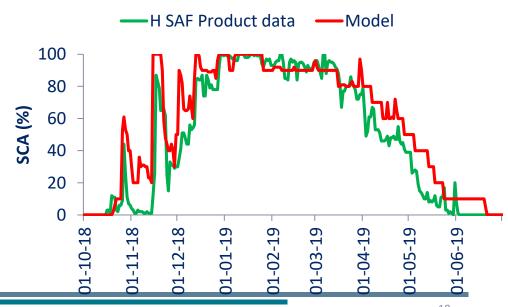
Hydro-validation study with HBV



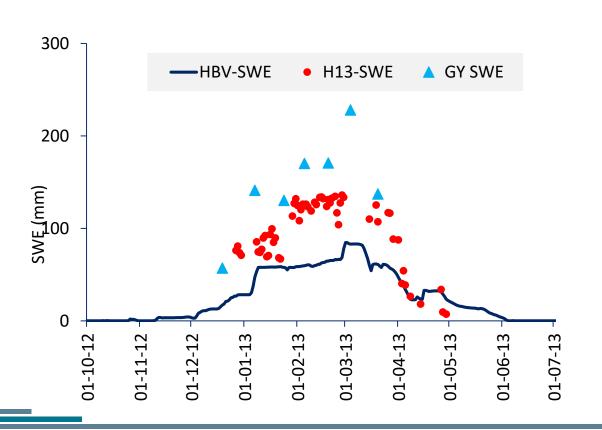
$NSE = 1 - \frac{\sum_{t=1}^{T} (Q_O^t - Q_S^t)^2}{\sum_{t=1}^{T} (Q_O^t - \bar{Q_O^t})^2}$

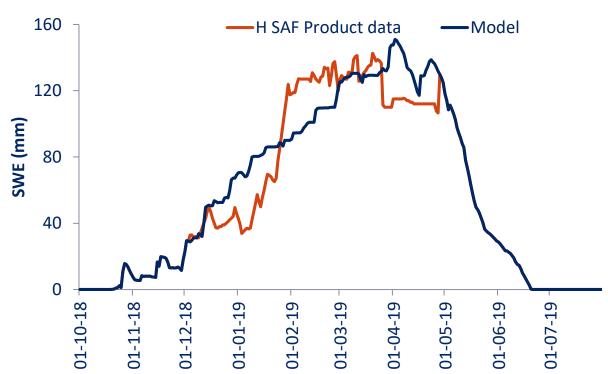
!	Period	Years	NSE	P-bias (%)
•	Cal	2008-2012	0.90	18.2
	Val	2013-2019	0.91	18.3

Snow Cover Area, SCA

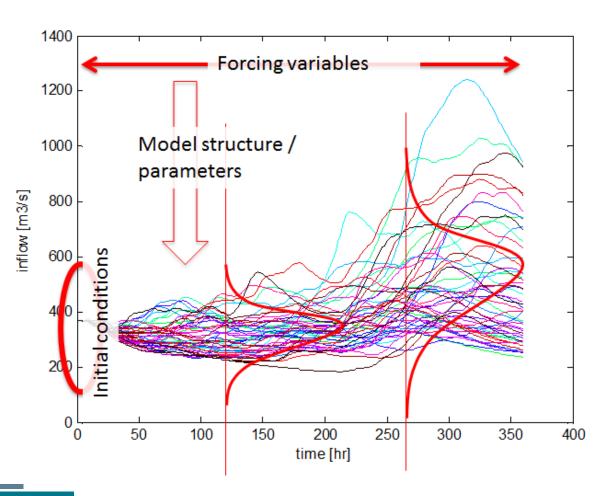


Snow Water Equivalent, SWE





Data Assimilation



Prediction of Hydrological System (HS) are often poor due to

- Initial conditions,
- Forcing errors,
- Inadequate model structure and parameters

DA Challenge Tile to the state of the state

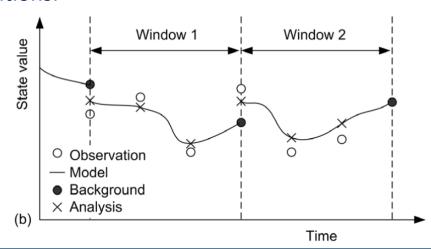
<u>The purpose</u> is *to improve the initial state of the model*, which later makes a forecast for the next time step.

Given: a (noisy) model of system dynamics

Find: the best estimates of system states X from (noisy) observations Z.

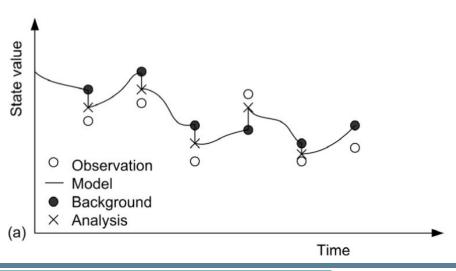
1. Variational Data Assimilation (VarDA):

- ☐ Correction of initial conditions of a model and obtaining the best overall fit of the state to the observations by minimizing over *space and time an objective function*
- ☐ Behavior of the system is driven by accuracy of initial conditions.



2. Sequential Data Assimilation (SeqDA):

- Observations are used as soon as they are available to correct the present state of a model (sequentially updated).
- Suitable when the system is driven by boundary



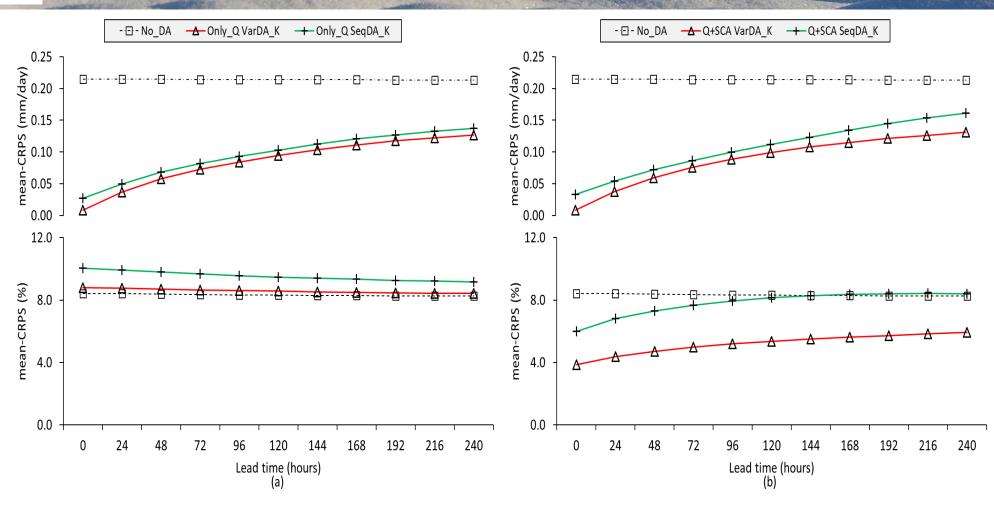
Variational DA:

- + simultaneous technique over several time steps
- + suitable for reanalysis
- requires first-order sensitivities, i.e.
 adjoint code, and preferably a smooth model
- - deterministic approach

Ensemble Kalman DA:

- + applicable on black-box models, simple to implement
- + probabilistic approach
- sequential technique, has issues with time lags

DA Results



$$PRS_{L} = \frac{1}{n} \sum_{k=1}^{n} \int_{\inf}^{\inf} \left(F_{t} \left(y_{k,L} \right) - \Gamma \left(y_{k,L} \ge \hat{y}_{k} \right) \right)^{2} dy$$

- The results show the usefulness of the data sets and methods.
- Impact and hydro-validation of products indicate their applicability in an operational hydrological framework for runoff forecasting in snow dominated regions.
- The products can also be used to improve the model output and state variables with data assimilation.
- The products are being improved in each developing phase (CDOP) of the project

