Extreme snow loads

a natural hazard

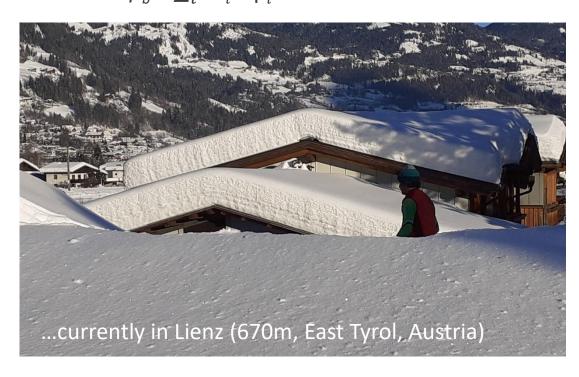
EUMeTrain – SNOW Event Week February 11, 2021 Michael Winkler, ZAMG Innsbruck (AT)

Snow on roofs

Snow cover preserves and sums up precipitated mass.

snow load = snow water equivalent *times* gravit. accel. SL = SWE*g [kN/m²]

SWE = snow height times bulk density -> SWE = $HS*\rho_b = \sum_i hs_i * \rho_i$ However, snow is a stratified medium.


Snow on roofs

Snow cover preserves and sums up precipitated mass.

snow load = snow water equivalent *times* gravit. accel. SL = SWE*g [kN/m²]

SWE = snow height *times* bulk density -> SWE = $HS*\rho_b = \sum_i hs_i * \rho_i$ However, snow is a stratified medium.

Settling – Densification
Wind drift
Creeping – Gliding
Rain-on-snow
Melting – Refreezing
Melt water damming
Differential stress

Damages by recent extreme snow load events

In Austria and neighboring regions:

- 2006 (Northern Alps, 15 deaths)
- 2008/09 (Southern Alps, roof damages)
- 2014 (Southern Alps, collapses of barns)
- 2012 (Northern Alps, collapses of side buildings)
- 2017 and 2018 (Northern Alps)
- 2021 Southern Alps (many collapses of buildings)

Jan 25, 2021, Tristach (AT) © P. Fuetsch

yesterday, Sterzing (IT) © orf.at

Jan 03, 2021, Matrei (AT) © orf.at

Damages by recent extreme snow load events

- 2006 (Northern Alps, even 15 deaths)
- 2008/09 (Southern Alps, roof damages)
- 2014 (Southern Alps, collapses of barns)
- 2012 (Northern Alps, collapses of side buildings)
- 2017 and 2018 (Northern Alps)
- 2021 Southern Alps (many collapses of buildings)

Not always roof collapses and fatalities in buildings, but

- deaths and injuries while shoveling
- dead animals
- total losses of roof frameworks
- high expenses (shoveling, renovation)

Jan 2021, Lienz (AT) © K. Jöchler

Damages by recent extreme snow load events

In Austria and neighboring regions:

- 2006 (Northern Alps, even 15 deaths)
- 2008/09 (Southern Alps, roof damages)
- 2014 (Southern Alps, collapses of barns)
- 2012 (Northern Alps, collapses of side buildings)
- 2017 and 2018 (Northern Alps)
- 2021 Southern Alps (many collapses of buildings)

Not always roof collapses and fatalities in buildings, but

- deaths and injuries while shoveling
- dead animals
- total losses of roof frameworks
- high expenses (shoveling, renovation)

Jan 2021, Kötschach (AT)
© C. Gratzer

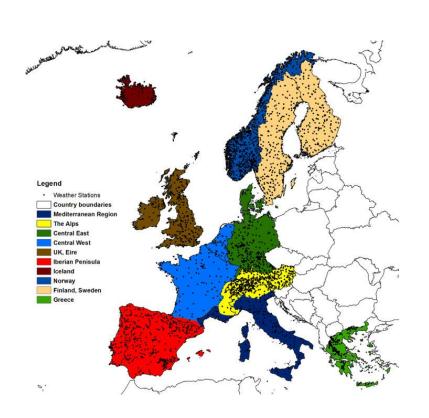
Not least, due to wrong or too conservative snow load assessments

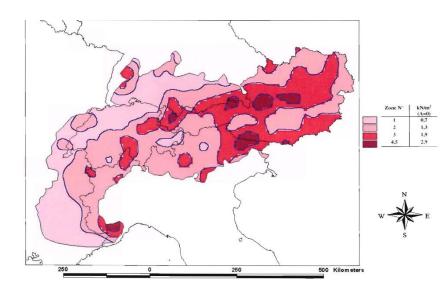
- high expenses
- destortion of business competition –
 in favour of e.g. concrete
 to the disfavour of timber construction, superstructures like solar panels...

However,...

... extreme snow loads only rarely are considered as natural hazards!

Jan 2021, East Tyrol (AT) © K. Jöchler

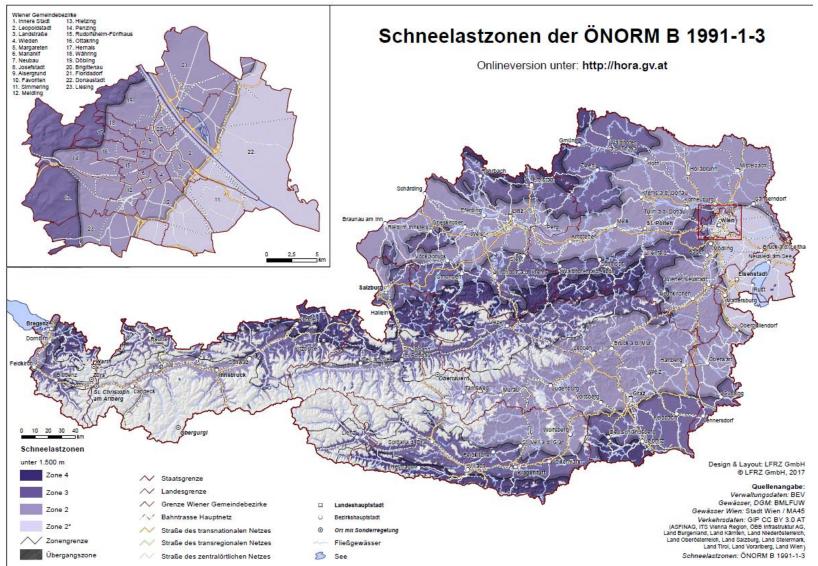

What is the assessment basis for structures and buildings?



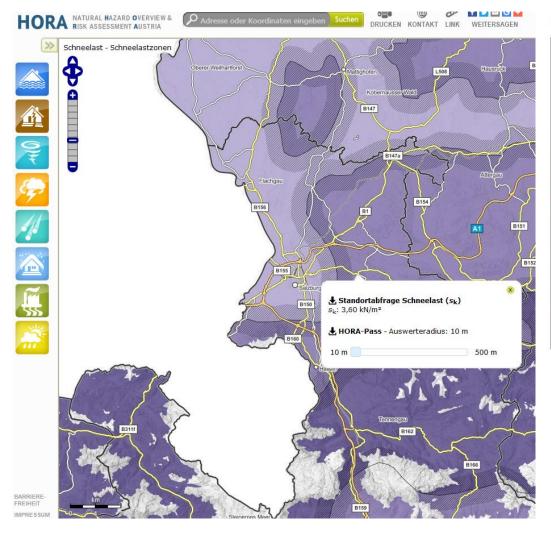
European Standard: Eurocode EN 1991-1-3

"meteorological" base: characteristic snow load on the ground s_k [kN/m²] s_k from extreme value statistics: 50 year return period = 2% yearly probability of exceedance

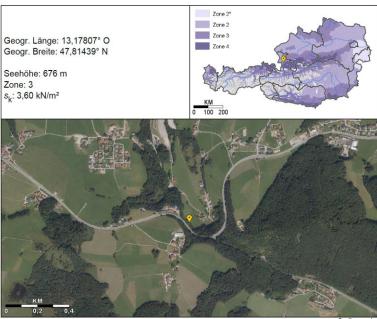
-> "snow load maps"



$$s_k = (0.642 \cdot Z + 0.009) \cdot \left[1 + \left(\frac{A}{728}\right)^2\right]$$
 with A…altitude and Z…zone number



Actual Austrian snow load map



Online at https://hora.gv.at

Charakteristische Schneelast am Boden sk

Snow load map: Status quo and problems (in Austria)

- snow load map was renewed 15 years ago (ÖNORM B 1991-1-3:2006)
- still one of the most detailed snow load maps
- 4 main zones with 5km transition zones in between (to make zonings are internationally common)
- valid up to 1500m asl.
 (also internationally common)

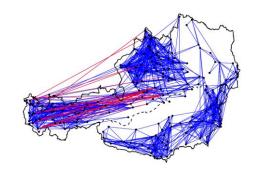
Problems -> motivation for new approaches:

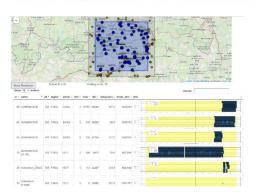
- 1. data base mostly ends in the 1980s
- 2. It's snow depth data. How about snow density?
- **3. drawing of the zones** is meteorologically sound, but **subjective and not reproducible**
- 4. zonings force "jumps"
- 5. >1500m?
- 6. "jumps" at national borders

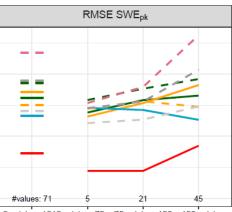
Project Schneelast.Reform - Methods

Data

- Longterm (>30 years), daily snow depths records from A, D, CH, IT, SLO
- Quality checks
- Corrections
- Gap filling

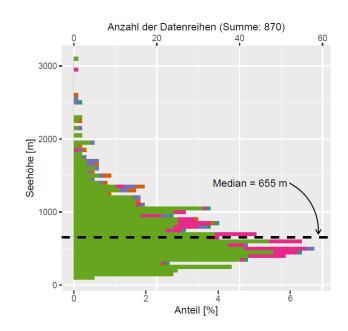

snow model

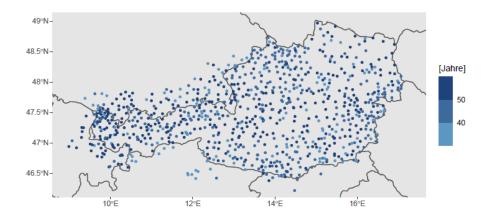

to get snow loads (SWE) from snow depth data

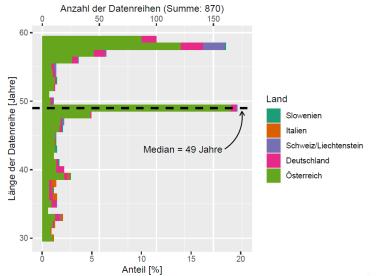

extreme value model

PhD Thesis of H. Schellander

ON THE SPATIAL MODELING OF METEOROLOGICAL EXTREME VALUES

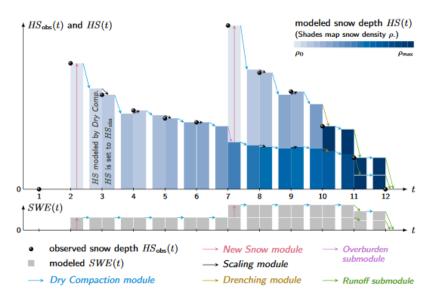



 $0 < (x) \le 1015$ $(x) \le 75$ $75 < (x) \le 150$ 150 < (x)

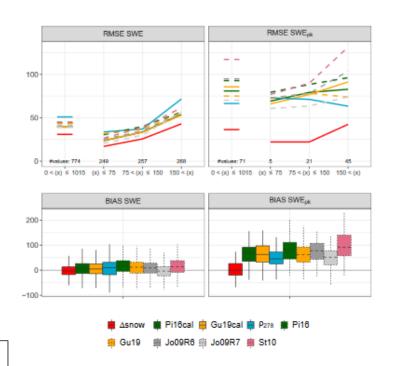


Project Schneelast.Reform - Results: Data

- gapless, daily snow depths
- from 870 stations
- evenly distributed (horizontal)
- between 118m and 3109m altitude
- each record covers at least 30 winters
- between 1960 and 2019
- median record length is 49 years

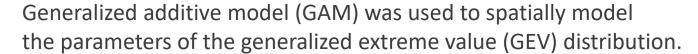


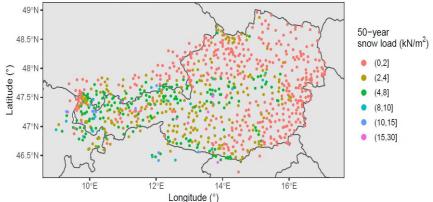
Project Schneelast.Reform - Results: snow model


Development of new snow model Δsnow

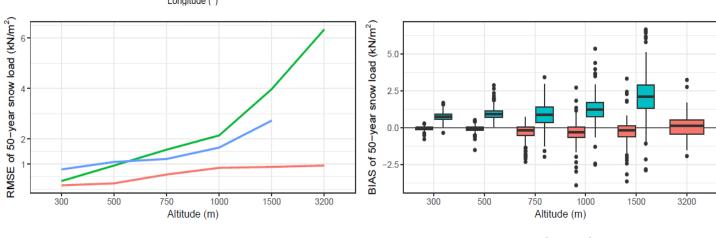
Winkler et al., in press, HESS

Snow water equivalents exclusively from snow depths and their temporal changes: The $\Delta {\rm SNOW}$ model


- semi-empirical, layer-resolving
- only input: regular snow depths

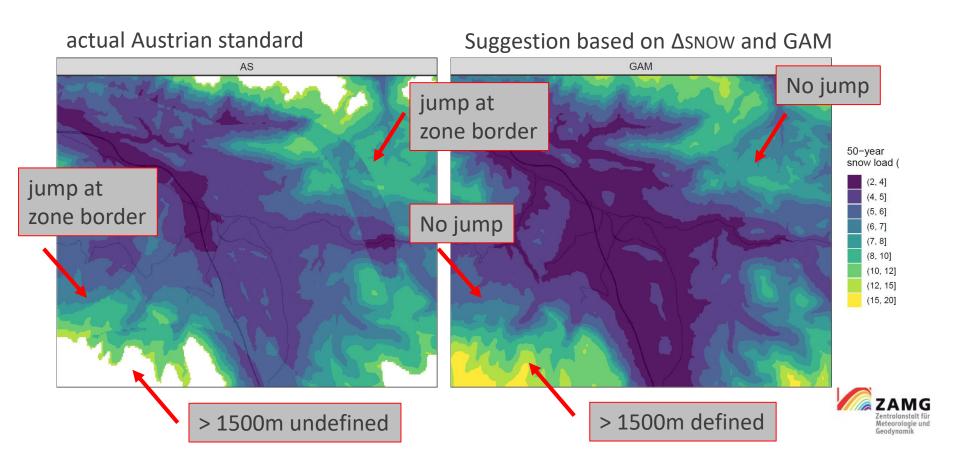

Free code: Schellander and Winkler, R-package niXmass, cran.r-project.org

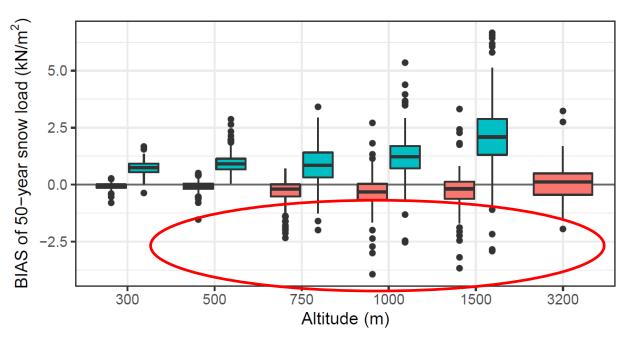
Project Schneelast.Reform - Results: spatial extreme value model


(Schellander et al. Towards a reproducible snow load map – an example for Austria, Adv. Sci. Res., submitted)

— GAM — SSM — AS

Model	RMSE	BIAS			
	$\mathrm{kN/m^2}$	$\mathrm{kN/m^2}$			
GAM	0.66	-0.21			
AS	1.61	1.16			


AS ... actualAustrian standard


suggestion for a novel snow load map

- 50x50m resolution
- up to 2000m
- No zonings, no jumps
- Reproducible, transparent, usable across borders
- Only input: snow depth records

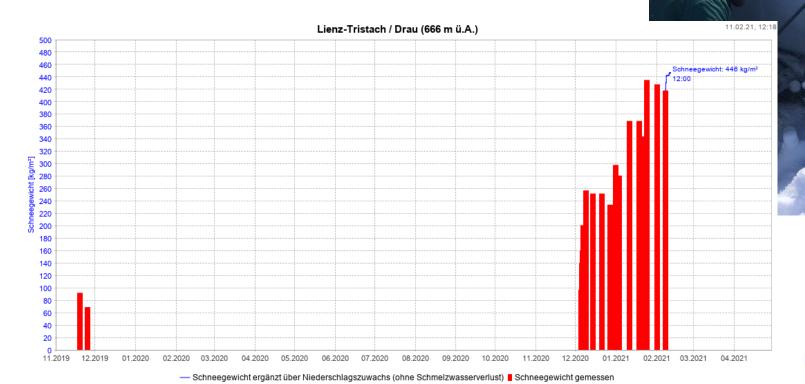
Ongoing...

- reduce outliers
- develop uncertainty measures
- other return periods (temporary buildings)
- Contact to other countries (Germany, Slovenia, ...to be continued...)



Model 🖨 GAM 🖨 AS

Alban Maria


- currently active for regions East Tyrol and Carinthia
- "prototype" was established 2012 at ZAMG
- manual measurements in snow pits
- still at developmental stage

- currently active for regions East Tyrol and Carinthia
- "prototype" was established 2012 at ZAMG
- manual measurements in snow pits
- still at developmental stage

- currently active for regions East Tyrol and Carinthia
- "prototype" was established 2012 at ZAMG
- manual measurements in snow pits
- still at developmental stage

		Datum	Seehöhe	öhe Schneehöhe	Schneelast	SWE	Dichte	ÖNOPA	ÖNORM B 1991-1-3 (gültig ab 2006)			ÖNOPM	ÖNORM B 4000 (gültig: 1960-1983		
		der Messung	in Meter					ONOVIAI P 1331-1-2 (Britis an 5000)			ÖNORM B 4013 (gültig: 1983-2005)			ONORIVI B 4000 (guillig: 1500-1585)	
				cm	kN/m²	kg/m²	kg/m³	Zonen-Rechenwert	Wert / (kN/m²)	Differenz [kg/m²]	%	Zone (Seehöhe It. Tab.)	Wert / (kN/m²)	Differenz [kg/m²]	6 Wert / (kN/m²) Differenz [kg/m²]
ОТ	Matrei i.O. (ZAMG)	09.01.2021	933	120	3,50	357	298	2,00	3,42	-8	102	Α	2,68	-84 1	11
NT	Gnadenwald (HD)	20.01.2021	875		0,98	100		2,00	3,16	223	31	Α	2,42	147	0
ОТ	Lienz Tristach (HD)	25.01.2021	666	105	4,26	435	414	3,00	3,55	-72	120	B/C	2,60	-170 1	54
ОТ	Obertilliach (HD)	25.01.2021	1400	190	5,41	552	291	3,75	11,35	606	48	С	8,75	341 6	2
ОТ	Anras (HD)	25.01.2021	1300		3,46	353		3,00	8,11	474	43	В	5,68	227	1
ОТ	Innervillgraten (HD)	25.01.2021	1400		4,26	435		3,00	9,09	493	47	В	6,51	229	5
ОТ	St.Jakob Def. (HD)	25.01.2021	1381	140	3,04	310	221	2,00	5,95	297	51	А	5,22	222	8
ОТ	Prägraten (HD)	25.01.2021	1340		3,38	345		2,00	5,67	234	60	Α	4,94	159 6	8
NT	Ginzling (HD)	01.02.2021	987	40	1,47	150	375	2,00	3,67	224	40	Α	2,93	149 5	0
NT	Gnadenwald (HD)	01.02.2021	875		0,64	65		2,00	3,16	258	20	А	2,42	182 2	6
NT	Hochfilzen (HD)	01.02.2021	961	40	1,18	120	300	4,50	7,95	691	15	С	4,64	354 2	5
ОТ	Obertilliach (HD)	08.02.2021	1400	165	5,68	580	352	3,75	11,35	578	50	С	8,75	313	5
OT	Anras (HD)	08.02.2021	1300		3,77	385		3,00	8,11	442	47	В	5,68	195	6
ОТ	Innervillgraten (HD)	08.02.2021	1400		4,26	435		3,00	9,09	493	47	В	6,51	229	5
ОТ	St.Jakob Def. (HD)	08.02.2021	1381	140	3,19	325	232	2,00	5,95	282	54	Α	5,22	207	1
ОТ	Prägraten (HD)	08.02.2021	1340		4,02	410		2,00	5,67	169	71	Α	4,94	94 8	1
ОТ	Felbertauern Süd (HD)	08.02.2021	1637		5,19	530		2,00	7,83	269	66	А	7,13	198	3
ОТ	Lienz Tristach (HD)	08.02.2021	666	105	4,21	430	410	3,00	3,55	-67	119	B/C	2,60	-165 1	52
NT	Plangeroß (HD)	08.02.2021	1605		3,00	306		2,00	7,58	467	40	D	5,55	260	4
NT	Obernberg (HD)	14.12.2020	1360		1,86	190		2,00	5,81	402	32	A	5,07	328	7
NT	Leutasch (HD)	08.02.2021	1135	70	2,52	257	367	2,50	5,54	308	45	С	6,04	360	2
NT	Seefeld (ZAMG)	09.02.2021	1182	69	2,47	252	365	2,50	5,87	347	42	В	4,80	238	1
NT	Vergötschen (HD)	09.02.2021	1269		2,16	220		2,00	5,22	313	41	D	3,35	122	4

In case of exceedances of standards:

warning/information distributed to

- local authorities (communities, regions)
- civil defense agencies
- Press

intensified observations

Snow load monitoring - Outlook

- more systematic SWE observations in Austria
- platform to collect available measurements (citizen science)
- automated measurements
- powerful tools to compare current situtations with standards
- exchange across borders
- not least: Manifest extreme snow loads as a natural hazard!

Jan 3rd, 2021. Matrei (AT). ©krone.at

Extreme snow loads: a natural hazard

Thank you!

contact: michael.winkler@zamg.ac.at

