GRASP: applications to enhanced retrievals retrieval of aerosol from PARASOL satellites observations

Oleg Dubovik¹

P. Litvinov, T. Lapyonok, X. Huang, A. Lopatin, F. Ducos and Y. Derimian 1- University of Lille-1, CNRS, France

> D. Fuertes, B. Torres 2- GRASP-SAS, Lille, France

M. Aspetsberger, G. Ogris, A. Hangler, C. Federspiel etc 3- Catalysts GmbH, High Performance Computing, Linz, Austria

GRASP team:

EUMETSAT, Environment week, 11 April, 2016

Laboratoire d'Optique Atmosphérique CNRS, Université Lille-1

GRASP: Generalized Retrieval of Aerosol and Surface Properties

EUMETSAT, Environment week, 11 April, 2016

PARASOL: the space–borne instrument most suitable for enhanced aerosol/surface

characterization

PARASOL daily coverage image,

March 3, 2013

<u>life time</u>: ³ dec: ²⁰2004 – 2013

INTENSITY

for aerosol (0.44, 0.49, 0.56, 0.67, 0.865, 1.02 μm) for gas absorption: (0.763, 0.765, 0.910 μm) **POLARIZATION (Q, U)**: (0.49, 0.67, 0.865 μm) Swath: about 1600 km cross-track Global coverage: every 2 days 1 pixel spatial resolution: 5.3km × 6.2km

Viewing directions: $16 \cdot (80^{\circ} - 180^{\circ})$

GRASP specifics:

- applicable to diverse remote sensing observations;
- accurate radiance modeling:
 - direct "on-line" computations;
 - it is driven by many parameters (43 for PARASOL, 41 for MERIS);

GRASP specifics:

- applicable to diverse remote sensing observations;

- accurate radiance modeling:

- direct "on-line" computations;

- it is driven by many parameters (43 for PARASOL, 41 for MERIS);

Forward Model

ASSUMPTIONS:

- dV/dlnr - volume size distribution is the same for both components;

- non-spherical - mixture of randomly oriented polydisperse spheroids;

- aspect ratio distribution $N(\varepsilon)$ is fixed to the retrieved by Dubovik et al. 2006

AERONET retrievals are driven by 31 variables :

Smoke

dV/Inr - size distribution (22 values); n(λ) and k(λ) - ref. index (4 +4 values) C_{spher} (%) - spherical fraction (1 value)

Desert Dust

$\mathbf{R}\mathbf{P}$	

Surface Reflectance

(1)

(1)

(2)

(3)

(1)

Rahman-Pinty-Verstraete (RPV) model (Rahman et al., 1993)

$$\rho_{sfc}(\vartheta_1,\varphi_1;\vartheta_2,\varphi_2) = \rho_0 M_i(k) F_{HG}(\Theta) H(h)$$

(2) *Li – Ross model* (MODIS, etc) (*Ross, (1981); Li, X., Strahler (1992)*)

BPDF

.

Maignan et al., (2009)

 $R_{p}^{surf}\left(q_{s},q_{v},j_{r}\right) = \frac{B\exp\left(-\tan\left(a_{i}\right)\right)\exp\left(-v\right)}{4(m_{0}+m_{1})}\mathbf{F}_{p}\left(g\right) \quad (B - \text{empirical parameter})$

Nadal and Bréon, (1999)

Fresnel facet model for Gaussian surfaces (Litvinov et al., 2011)

BRDF +BPDF Physically based models Cox-Munk model (ocean surface)

Physical models for land surface reflection matrix (Litvinov et al., 2012)

GRASP specifics:

Inversion scheme:

search in continues space of solution for many

parameters (aerosol + surface);

- optimization as Multi-term LSM;
- adapted for synergy of observations: multi-pixel retrieval;
- ✓ single fitting procedure ;

$$2\Psi(\mathbf{x}) = \sum_{i=1}^{N} \left[\Delta \mathbf{y}_{i}^{\mathrm{T}} \mathbf{W}_{\mathrm{f},i}^{-1} \Delta \mathbf{y}_{i} + \gamma_{\mathrm{s}} \mathbf{x}_{i}^{\mathrm{T}} \mathbf{\Omega}_{\mathrm{s},i} \mathbf{x}_{i} + \gamma_{\mathrm{a}} (\mathbf{x}_{i} - \mathbf{x}_{i}^{*})^{\mathrm{T}} \mathbf{W}_{\mathrm{a},i}^{-1} (\mathbf{x}_{i} - \mathbf{x}_{i}^{*}) \right] + \mathbf{x}^{\mathrm{T}} \mathbf{\Omega}_{\mathrm{inter-pixel}} \mathbf{x}$$

- ✓ no solution modifications (no averaging, etc.)
- ✓ all parameters (43) are retrieved simultaneously at original resolution of (~6 km);
- no location specific assumptions (except land/water/snow);
- ✓ all a priori constraints general for all pixels (~6 km);
- ✓ singe initial guess;

GRASP specifics:

Inversion scheme:

✓ search in continues space of solution for many

parameters (aerosol + surface);

- ✓ optimization as Multi-term LSM;
- ✓ adapted for synergy of observations: multi-pixel retrieval;
- ✓ single fitting procedure ;

$$2\Psi(\mathbf{x}) = \sum_{i=1}^{N} \left[\Delta \mathbf{y}_{i}^{\mathrm{T}} \mathbf{W}_{\mathrm{f},i}^{-1} \Delta \mathbf{y}_{i} + \gamma_{\mathrm{s}} \mathbf{x}_{i}^{\mathrm{T}} \mathbf{\Omega}_{\mathrm{s},i} \mathbf{x}_{i} + \gamma_{\mathrm{a}} (\mathbf{x}_{i} - \mathbf{x}_{i}^{*})^{\mathrm{T}} \mathbf{W}_{\mathrm{a},i}^{-1} (\mathbf{x}_{i} - \mathbf{x}_{i}^{*}) \right] + \mathbf{x}^{\mathrm{T}} \mathbf{\Omega}_{\mathrm{inter-pixel}} \mathbf{x}$$

- no solution modifications (no averaging, etc.)
- all parameters (43) are retrieved simultaneously at original resolution of (\sim 6 km);
- no location specific assumptions (except land/water/snow);
- ✓ all a priori constraints general for all pixels (~6 km);
- ✓ singe initial guess;

$$\begin{aligned}
& \text{Sensor 1} \\
& \text{Sensor 2} \\
& \text{Independent III} \\
& \text{f}_{1}^{*} = F_{1} \mathbf{a} + \Delta_{1} \\
& \text{(e.g. see Dubovik and King 2000, Dubovik 2004, Dubovik et al. 2011)} \\
& \text{f}_{2}^{*} = F_{2} \mathbf{a} + \Delta_{2} \\
& \dots \\
& \widehat{\mathbf{a}} = \left(\mathbf{F}_{1}^{T} \mathbf{C}_{1}^{-1} \mathbf{F}_{1} + \mathbf{F}_{2}^{T} \mathbf{C}_{2}^{-1} \mathbf{F}_{2} + \dots\right)^{-1} \left(\mathbf{F}_{1}^{T} \mathbf{C}_{1}^{-1} \mathbf{f}_{1}^{*} + \mathbf{F}_{2}^{T} \mathbf{C}_{2}^{-1} \mathbf{f}_{2}^{*} + \dots\right) \\
& \text{Sensor} \\
& \text{a priori} \\
& \mathbf{f}_{1}^{*} = \mathbf{F} \mathbf{a} + \Delta_{f} \\
& \mathbf{a}^{*} = \mathbf{a} + \Delta_{a} \end{aligned}$$

$$\begin{aligned}
& \widehat{\mathbf{a}} = \left(\mathbf{F}^{T} \mathbf{C}_{f}^{-1} \mathbf{F} + \mathbf{C}_{a}^{-1}\right)^{-1} \left(\mathbf{F}^{T} \mathbf{C}_{f}^{-1} \mathbf{f}^{*} + \mathbf{C}_{a}^{-1} \mathbf{a}^{*}\right) \\
& \text{Kalman Filter, optimal Estimation " by Rodgers, etc.} \end{aligned}$$

$$\begin{aligned}
& \widehat{\mathbf{a}} = \left(\mathbf{F}^{T} \mathbf{C}_{f}^{-1} \mathbf{F} + \mathbf{S}^{T} \mathbf{S}\right)^{-1} \left(\mathbf{F}^{T} \mathbf{C}_{f}^{-1} \mathbf{f}^{*}\right) \\
& \widehat{\mathbf{a}} = \left(\mathbf{F}^{T} \mathbf{C}_{f}^{-1} \mathbf{F} + \mathbf{S}^{T} \mathbf{S}\right)^{-1} \left(\mathbf{F}^{T} \mathbf{C}_{f}^{-1} \mathbf{f}^{*}\right) \\
& \widehat{\mathbf{a}} = \left(\mathbf{F}^{T} \mathbf{C}_{f}^{-1} \mathbf{F} + \mathbf{S}^{T} \mathbf{S}\right)^{-1} \left(\mathbf{F}^{T} \mathbf{C}_{f}^{-1} \mathbf{f}^{*}\right) \\
& \widehat{\mathbf{a}} = \left(\mathbf{F}^{T} \mathbf{C}_{f}^{-1} \mathbf{F} + \mathbf{S}^{T} \mathbf{S}\right)^{-1} \left(\mathbf{F}^{T} \mathbf{C}_{f}^{-1} \mathbf{f}^{*}\right) \\
& \widehat{\mathbf{a}} = \left(\mathbf{F}^{T} \mathbf{C}_{f}^{-1} \mathbf{F} + \mathbf{S}^{T} \mathbf{S}\right)^{-1} \left(\mathbf{F}^{T} \mathbf{C}_{f}^{-1} \mathbf{f}^{*}\right) \\
& \widehat{\mathbf{a}} = \left(\mathbf{F}^{T} \mathbf{C}_{f}^{-1} \mathbf{F} + \mathbf{S}^{T} \mathbf{S}\right)^{-1} \left(\mathbf{F}^{T} \mathbf{C}_{f}^{-1} \mathbf{f}^{*}\right) \\
& \widehat{\mathbf{a}} = \left(\mathbf{F}^{T} \mathbf{C}_{f}^{-1} \mathbf{F} + \mathbf{S}^{T} \mathbf{S}\right)^{-1} \left(\mathbf{F}^{T} \mathbf{C}_{f}^{-1} \mathbf{f}^{*}\right) \\
& \widehat{\mathbf{a}} = \left(\mathbf{F}^{T} \mathbf{C}_{f}^{-1} \mathbf{F} + \mathbf{S}^{T} \mathbf{S}\right)^{-1} \left(\mathbf{F}^{T} \mathbf{C}_{f}^{-1} \mathbf{f}^{*}\right) \\
& \widehat{\mathbf{b}} = \widehat{\mathbf{b}} = \widehat{\mathbf{b}} + \widehat{\mathbf{b}} \\
& \widehat{\mathbf{b}} = \widehat{\mathbf{b}} = \widehat{\mathbf{b}} \\
& \widehat{\mathbf{b}} = \widehat{\mathbf{b}} = \widehat{\mathbf{b}} \\
& \widehat{\mathbf{b}} = \widehat{\mathbf{b}} = \widehat{\mathbf{b}} \\
& \widehat{\mathbf{b$$

EUMETSAT, Environment week, 11 April, 2016

Single - Pixel Retrieval:

RT calculation on fly !!!

Multi-term LSM statistically optimized Solution (Dubovik and King 2000, Dubovik 2004):

$$\boldsymbol{a}_{j} = \left(\boldsymbol{\mathsf{F}}_{j}^{T} \boldsymbol{\mathsf{W}}_{j}^{-1} \boldsymbol{\mathsf{F}}_{j} + \gamma_{j} \boldsymbol{\Omega}_{j} \right)^{-1} \left(\boldsymbol{\mathsf{F}}_{j}^{T} \boldsymbol{\mathsf{W}}_{j}^{-1} \boldsymbol{\mathit{f}}_{j}^{*} \right)$$

, where
$$W_j = \mathbf{S}_j^T \mathbf{S}_j; \mathbf{W}_j = \frac{1}{e_f^2} \mathbf{C}_f; \quad g_j = \frac{e_f^2}{e_a^2}$$

Array matrices:

$$\boldsymbol{a}_{j} = \left(\boldsymbol{\mathsf{F}}_{j}^{T}\boldsymbol{\mathsf{W}}_{j}^{-1}\boldsymbol{\mathsf{F}}_{j} + \gamma_{j}\boldsymbol{\Omega}_{j}\right)^{-1} \left(\boldsymbol{\mathsf{F}}_{j}^{T}\boldsymbol{\mathsf{W}}_{j}^{-1}\boldsymbol{\mathsf{f}}_{j}^{*}\right)$$

 $g_{\scriptscriptstyle \mathrm{D}}$

The concept of multi-pixel retrieval

X-Variability Constraints

Multi-term LSM Multi-Pixel Solution:

Dubovik et al. 2011

EUMETSAT, Environment week, 11 April, 2016

Test with synthetic measurements

Aerosol Optical Thickness

PARASOL over Banizoumbou in January, February 2008

Test with synthetic measurements

Single Scattering Albedo

PARASOL over Banizoumbou in January, February 2008

EXAMPLES of PARASOL/GRASP retrievals - 2008 NO location specific ASSUMPTIONS on aerosol and surface

All calculation on the fly

AOT(0.56) - loading

SSA(0.56) - absorption

EUMETSAT, Environment week, 11 April, 2016

1 pixel spatial resolution: 5.3kr

ing directions: 16: (80° - 180

TON (0, U): (0.49

Processed at ICARE

EXAMPLES of PARASOL/GRASP retrievals - 2008

NO location specific **ASSUMPTIONS** on aerosol and surface All calculation on the fly

Albego(0.56) - surface

NDVI

Processed at ICARE

EUMETSAT, Environmental week, 11 April, 2016

Aver. Value=-0.018 St.D.= 0.038 N=106

Aver. Value=-0.007 St.D.= 0.038 N=106 Aver. Value=-0.046 St.D.= 0.066 N=106

✓ Software implementation:

- advance programing:
- highly parallelized (currently runs at LOA at ~100 CPU)
 Uses CPU/CPU!
- ✓ uses CPI / GPU;
- Current inversion is 0.1-0.3 sec per sec, optimization continues constantly;

Currently processed > 7 years (2006 – 2012) with "fast" version, soon the whole archive is expected to be processed;

✓ to be available as <u>OPEN SOURCE</u> code;

0.6

0.5

0.7

0.8

0.9

1.0

Dust detection with GRASP

GRASP/PARASOL AngExp 18/02/2008

Dust events:

- ✓ High AOD
- ✓ Angstrom Exponent < 0.5
- ✓ SSA (440 1020) > 0.9

Observation of aerosol events from PARASOL/GRASP retrievals

EUMETSAT, Environment week, 11 April, 2016

GRASP retrieval: Kilauea volcano (Hawaii, Halemaumau Crater, June-August, 2008)

GRASP retrieval: Kilauea volcano (Hawaii, Halemaumau Crater, June-August, 2008)

AOD, 443 nm

Fine mode AOD, 443 nm

Brazil biomass burning fires Autumn 2007

PARASOL/GRASP

Aerosol Scale Height: winter, 2009

Particulate matter for 2.5 mum

Combine (Particulate matter for 2.5 mum, Particulate matter for 2.5 mum) (none)

EUMETSAT, Environmental week, 11 April, 2016

August 15, 2009

Particulate matter for 2.5 mum

Aerosol type detection with GRASP Mineral dust frequency of occurrence

GRASP/PARASOL Winter 2009 MineralDust (type 8)

GRASP/PARASOL Spring 2009 MineralDust (type 8)

Aerosol type detection with GRASP Smoke frequency of occurrence

GRASP/PARASOL Summer 2009 SmokeFlaming (type 7)

GRASP/PARASOL Autumn 2009 SmokeFlaming (type 7)

CONCLUSION: GRASP processing provides first global detailed aerosol characterization from PARASOL (including global distribution of aerosol types and absorption)

Combining complimentary observations using multi-pixel retrieval

- Promising for future missions :
- 3MI / EPS-SG;
- Sentinel-3, (OLCI, SLSTR; OLCI + SLSTR);
 Sentinel- 4 ; FCI/MTG, etc.

0.5 0.6 0.7 0.8 0.9 1.0

EUMETSAT, Environment week, 11 April, 2016

GRASP over land and ocean

Biomass burning

Courtesy of V. Amiridis et al.

EUMETSAT, Environmental week, 11 April, 2016

Independent !!!

<u>sensor 1</u>

<u>, sensor 2</u>

Multi-Term LSM

(e.g. see Dubovik 2004)

$$\begin{cases} \mathbf{f}_{1}^{*} = \mathbf{F}_{1} \ \mathbf{a} + \mathbf{D}_{1} \\ \mathbf{f}_{2}^{*} = \mathbf{F}_{2} \ \mathbf{a} + \mathbf{D}_{2} \\ \dots \\ \mathbf{a} = \left(\mathbf{F}_{1}^{T} \mathbf{C}_{1}^{-1} \mathbf{F}_{1} + \mathbf{F}_{2}^{T} \mathbf{C}_{2}^{-1} \mathbf{F}_{2} + \dots \right)^{-1} \left(\mathbf{F}_{1}^{T} \mathbf{C}_{1}^{-1} \mathbf{f}_{1}^{*} + \mathbf{F}_{2}^{T} \mathbf{C}_{2}^{-1} \mathbf{f}_{2}^{*} + \dots \right) \end{cases}$$

Single-sensor data

$$\widehat{\boldsymbol{a}} = \left(\mathbf{F}^{\mathsf{T}} \mathbf{C}_{f}^{-1} \mathbf{F} + \mathbf{C}_{a}^{-1} + \mathcal{G} \mathbf{S}^{\mathsf{T}} \mathbf{S} \right)^{-1} \left(\mathbf{F}^{\mathsf{T}} \mathbf{C}_{f}^{-1} \mathbf{f}^{*} + \mathbf{C}_{a}^{-1} \mathbf{a}^{*} \right)$$

$$\begin{cases} \mathbf{f}_{1}^{\cdot} = \mathbf{f}^{*} = \mathbf{F} \ \mathbf{a} + \mathbf{D}_{f} \\ \mathbf{f}_{2}^{\cdot} = \mathbf{a}^{*} = \mathbf{a} + \mathbf{D}_{a} \\ \mathbf{f}_{3}^{\cdot} = \mathbf{0}^{*} = \mathbf{S}\mathbf{a} + \mathbf{D}(\mathbf{D}\mathbf{a}) \end{cases}$$

Generalization of "Optimum estimation" and Phillips-Tikhonov-Twomey formulas

Dubovik et al., 2006

AERONET model of aerosol

