CLOUD PHYSICS BASED PRECIPITATION PRODUCTS FOR WEATHER AND CLIMATE APPLICATIONS

Rob Roebeling

Thanks to: Marie Doutriaux-Boucher, Jan Fokke Meirink, and Erwin Wolters

Content

- Motivation
- Basics: Cloud Physical Properties (CPP) retrievals
- Basics: Cloud Physics based Precipitation Retrieval (CPP-Precip)
- Validation: Cloud Physics based Precipitation Retrievals
- Weather Applications
- Climate Applications
- Summary

Role of precipitation in water balance

Figure: Schematic representation of the role of clouds and precipitation in the water balance

Basics of Cloud Physical Properties Retrievals

Cloud Physical Properties Retrieval (1/3) Introduction

Fig. Example spectra of snow surfaces, an ice-cloud and a water-cloud. The color blocks indicate the positions (and spectral width) of the SEVIRI Visible and Near-Infrared channels

Cloud Physical Properties Retrieval (2/3)

Principle

Cloud Physical Properties Retrieval (3/3) Examples

Cloud Thermodynamic Phase

Cloud Optical Thickness

o o	7	14	21	28	35	42	49	56	63	70

Basics of Cloud Physics based Precipitation retrieval

Cloud Physics based Precipitation Retrieval (1/3)

Cloud Physics based Precipitation Retrieval (2/3)

Where			Wher
ΔH	: Offset height rain column	[km]	CTT_{p}
ΔR	: Offset rain rate	[mm hr ⁻¹]	CTT,
∆CWP	: Offset Condensed Water Path	[g m ⁻²]	CWP
C1	: Constant	[hr]	C2

Where		
CTT _{pix}	: Cloud Top Temperature pixel	[K]
CTT _{max}	: Cloud Top Temperature maximum	[K]
CWP	: Condensed Water Path	[g m ⁻²]
C2	: Constant	[km² hr-1]

Roebeling and Holleman (2009), JAMC

Cloud Physics based Precipitation Retrieval (3/3)

Fig. Example of monthly precipitation occurrence (left) and precipitation intensity (right) for July 2008

Validation

Validation activities

- Comparison against ground-based observations;
- Comparison against retrievals of other providers;
- Comparison against other instruments (e.g. GPM, Weather Radar)

Validation activities

- Comparison against ground-based observations;
- Comparison against retrievals of other providers;
- Comparison against othe (e.g. GPM, Weather Rad

How to validate satellite retrievals?

Validation activities

- Comparison against ground-based observations;
- Comparison against retrievals of other providers;
- Comparison against other instruments (e.g. GPM, Weather Radar)

Triple Collocation Introduction

Triple Collocation Spatial Triple Errors

Instr	Mean	Max	Std	Err	RMSE	Correl	
2005							
GPCC	2.22	6.82	0.91	0.47	2.39	1.00	
ECA	1.88	6.33	0.81	0.16	2.39	0.93	
RADAR	2.70	24.89	1.71	6.01	2.39	0.18	
SEVIRI	2.71	6.74	0.88	0.75	2.39	0.86	
2006							
GPCC	2.39	6.43	0.88	0.59	2.55	1.00	
ECA	2.07	5.92	0.79	0.66	2.55	0.94	
RADAR	2.92	16.76	1.69	2.26	2.55	0.39	
SEVIRI	2.61	6.23	0.82	0.47	2.55	0.80	
2007							
GPCC	3.35	7.84	0.94	0.48	3.49	1.00	
ECA	2.99	7.22	0.82	0.52	3.49	0.92	
RADAR	3.57	12.34	1.78	3.23	3.49	0.29	
SEVIRI	2.72	8.83	0.91	0.61	3.49	0.79	

Triple Collocation Temporal Triple Errors

Fig: Temporal Triple Errors for Weather Radars, CPP-Precip and E-OBS based on 10-day variations during May-August 2006, 2006, and 2007

E-OBS: Gridded preciptation dataset from KNMI

R. Roebeling et al. 2012, JHM

Triple Collocation Temporal Cross Correlations

Fig: Correlations between Weather Radars, CPP-Precip and E-OBS based on 10-day variations during May-August 2006, 2006, and 2007

E-OBS: Gridded preciptation dataset from KNMI

R. Roebeling et al. 2012, JHM

Weather Applications

Shallow Convective Precipitation

Diurnal cycle 1 July 2007

Weather Radar

EUMETSAT-MPE (SEVIRI)

CPP-Precip (SEVIRI)

Trade Cumulus Precipitation

EUMETSAT

16

0

Trade Cumulus Precipitation

Daily mean precipitation - 20 November 2013

TRMM

CPP-Precip (SEVIRI)

GPM (Example)

Passive Microwave and Passive Infra-red instruments have difficulties to detect the occurrence and retrieve rain rates of shallow (warm) rain systems.

Trade Cumulus Precipitation

Quick look GPM 20 November 2013

Quick look CPP-Precip (SEVIRI) 20 November 2013

CPP-Precip (SEVIRI) has sufficient spatial resolution and sensitivity to detect shallow (warm) rain systems.

VIIRS Night time retrievals

Courtesy: A. Walther (CIMSS)

VIIRS VIS/NIR NPP Rain Rate 20150830 Asc Daytime

ATMS/MIRS rain rate

VIIRS VIS/NIR method

VIIRS Night time retrievals

Courtesy: A. Walther (CIMSS)

- **Preliminary results reveal that** the night-time visible and nearinfrared channels on the VIIRS instrument, based on Moonlight, may be used to detect (and retrieve) rain;
- Further works is ongoing at ٠ **CIMMS to refine the VIS/NIR** night-time retrievals.

Fig: SEVIRI, Weather Radars, and RACMO mean rain rate during May – Sept 2006

Fig: Noon (12-16hr) - **Morning (8-12 hr)** rain rate differences for SEVIRI, Weather Radars and RACMO during May – Sept 2006

Model Evaluation Diurnal Cycles

Wolters et al., 2011, HESS

Model Evaluation Diurnal Cycles

Wolters et al., 2011, HESS

Courtesy Prof. Erland Källén, ECMWF

Model Evaluation Diurnal Cycles

- CPP-Precip (SEVIRI) allows for sampling the diurnal cycle of rain rate during daylight hours;
- Rain Rate diurnal cycles from CPP-Precip (SEVIRI) match in shape and magnitude with observed diurnal cycles of rain rate;
- Rain Rate diurnal cycles from CPP-Precip (SEVIRI) could help to improve model parameterizations of rain rate

Wolters et al., 2011, HESS Precipitation Training Workshop, November 2015 Courtesy Prof. Erland Källén, ECMWF

References

- Roebeling R.A. and I. Holleman, 2009: SEVIRI rainfall retrieval and validation using weather radar observations, J. Geophys. Res., 114, D21202, doi:10.1029/2009JD012102.
- Wolters, E.L.A., B.J.J.M. van den Hurk en R.A. Roebeling, 2011, Evaluation of rainfall retrievals from SEVIRI reflectances over West Africa using TRMM-PR and CMORPH, *HESS*, 2011, 15, 437-451, <u>doi:10.5194/hess-15-437-2011</u>.
- Roebeling, R. A., E.L.A. Wolters, J.F. Meirink and H. Leijnse, 2012: Triple collocation of precipitation retrievals from SEVIRI with gridded rain gauge data and weather radar observations over Europe, J. of Hydro. Met., 13, 1552–1566, doi: <u>http://dx.doi.org/10.1175/JHM-D-11-089.1</u>
- Maidment, R., Grimes, D., Tarnavsky, E., Allan, R. P., Stringer, M., Hewison, T., Roebeling, R., Black, E., 2014: The 30-year TAMSAT African Rainfall Climatology And Time-series (TARCAT) Dataset, J. Geophys. Res., 119,, 10619-10644, doi:10.1002/2014JD021927

Data Quick looks and Downloads:

- Near real-time viewer (15 min data)
- Download near real-time data (15 min data)
- Download archived data (last 3 years, (15 min data))
- -> http://msgcpp.knmi.nl/
- -> ftp://msgcpp-ogc-realtime.knmi.nl/
- -> ftp://msgcpp-ogc-archive.knmi.nl/

Thank You

