Refinement of the technical aspects of the second generation CMORPH

Robert Joyce¹ and Pingping Xie²

1. NOAA/NCEP/CPC [INNOVIM]
2. NOAA/NCEP/CPC

EUMETRAIN Precipitation Event Week, 23 November 2015

Current CMORPH

14:00-14:30 UTC 24, August 2011

PMW based satellite estimated precipitation

- PMW precipitation derived from all available sensors
- IR derived cloud motion vectors
- Forward and backward PMW propagation and morphing

Products and availability

- 30 min 8km [1998-current]
- 3 hrly 0.25 deg [1998-current]

The 2nd Generation CMORPH Strategy

INPUT Precip

- PMW L2
- GEO/LEO IR-based estimates
- CFSR

Precipitation motion vectors

- Cross-correlation from GEO/LEO IR based precip
- Cross-correlation from CFSR
- Blended analysis through OI

Integration Framework

- Kalman Filter based algorithm
- Other components
 - Orographic effects..

2nd Generation CMORPH

Challenges Beyond 60° Parallels

- Source information for PRECIPITATION (rainfall + snowfall)
 - PMW:
 - IR/AVHRR:
 - Model / Reanalysis:
- Motion vectors over high latitudes
 - Vectors over regions with no GEO IR data?
 - Vectors from PMW/IR/Model precipitation fields?
 - Transition from tropics, subtropics and mid-, and hi-latitudes

PMW Retrieval Problems over Polar Caps

NOAA-15 AMSU precip 1 July 2009 mm/hr

Sea ice + SST screened precip 1 July 2009 mm/hr

AVHRR V2 Sea Ice Fraction 1 July 2009 [%]

AVHRR V2 SST 1 July 2009 [C]

PMW precipitation relative to AVHRR V2 Sea Ice Fraction 60N-90N: July 2009 mm/hr

PMW precipitation relative to AVHRR V2 SST 60N-90N: July 2009 mm/hr

March 2014 PTP Precipitation [mm/dy] (no screening)

March 2014 PTP Precipitation [mm/dy] (screened)

Combined PMW Snowfall + Rainfall Retrievals (top)

03:00 - 09:00 UTC 3 March, mm/6 hr Correlation = 0.622

Stage IV radar precipitation (bottom)

Operational MWCOMB (top panels) March 2014 [mm/day] PMW snowfall Enhanced MWCOMB (bottom panels)

CloudSat precipitation 1 August 2009 (top) 1 August 2014 (bottom) [mm/day]

CloudSat radar snow-sea ice cover precipitation for AVHRR IRTB: September – October 2009 [mm/day]

AVHRR IRTB (top) 1-10 August 2009 AVHRR IRFREQ + using cloud classification 1-10 August 2009 (bottom)

CloudSat/AVHRR August precipitation (red/blue) [ocean, land, snow sea ice] July – September 2009

CloudSat calibrated AVHRR IRFREQ August precipitation Aug 2009 (upper left), Nov 2009 (upper right), Feb 2010 (lower left), May 2010 (lower right)

Satellite derived precipitation: Jan 2010 (mm/day)

CMORPH 60N-60S

AVHRR PTP

CMORPH PTP Extended

CMORPH + AVHRR PTP

Summary of Source Precipitation Info

- Current PMW retrievals do not provide accurate spatial coverage over the entire globe
- PMW based snowfall retrievals promising but need to go through comprehensive tests before they may be utilized as inputs
- Estimates derived from AVHRR IR cover the polar caps with reasonable (usable) accuracy using CloudSat for calibration
- Model based precipitation fields are important source of information for cold season / high latitude precipitation

Precipitation Motion Vector of 2nd Generation CMORPH

Motion vectors can be computed from consecutive fields of PRECIPITATION using the cross-correlation method

- GEO IR based precipitation from 60°S to 60°N
- Model (CFSR) precipitation fields from 90°S to 90°N
- LEO PMW & IR based precipitation estimates from 90°S to 90°N
 [Did not test in this preliminary examination]
 - Much more technically challenging
 - Narrow strips
 - changing observation times
 - Computing vectors using PMW / AVHRR separately or jointly?

Vectors Derived from CFSR Hourly Precip Fields Appear Reasonable

 Defining motion vectors through computing cross-correlation between precipitation fields at two close time steps

Cloud motion vectors derived from CFSR hourly precipitation fields present reasonable quality

PTP Feasibility Tests:

- 0.05°lat/lon over the globe
- Input Precip:
 - PMW precipitation
 - AVHRR precip over high latitudes
- Motion vectors
 - Weighted mean of CFSR based and GEO IR based vectors
- Integration algorithm
 - Original CMORPH

PTP CMORPH

Latitudinal profiles of zonal mean precipitation (mm/hr)

Remaining Technical Challenges

- Deriving regionally/seasonally CloudSat calibrations for AVHRR IRTB
- Refining vectors from hourly model fields
- Deriving vectors from combined LEO platforms
- Combining vectors from different sources