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Why Measure from Space?

Ship Observations

Surface Observations



Specific Applications

 Documenting the Global Energy 

and Water Cycles

 Monitoring and Predicting Climate 

Change

 Understanding Precipitation 

Processes

 Forecasting
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Precipitation is a central player in the Earth’s water 

cycle balancing evaporative losses from the surface.
EUMeTrain Precipitation 2015 - L'Ecuyer 4



Testing Predicted Changes
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TEMPERATURE PRECIPITATION



Life-cycle of Tropical Cyclones
 Satellites provide snapshots of tropical cyclones at

various stages in their life-cycle most of which occurs
over oceans

Developing                    Mature       Decaying
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Improving Cyclone Forecasts
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Pioneering Satellite Radar Missions
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Advantages

 Advantages relative to ground-
based radars:

 Spatial coverage

 Access to remote/challenging 
regions (eg. oceans, jungles, ice 
sheets, mountains, etc.)

 No beam-blockage or significant 
range effects

 Uniform global calibration

 Advantages relative to
conventional space-borne 
sensors:

 Higher spatial resolution

 Very high sensitivity

 More direct measurement of 
microphysical parameters and less 
sensitive to underlying surface
than passive microwave

 Single frequency and, unlike
ground radars, no Doppler and
no polarization is currently
available

 Limited time sampling

 Crude temporal sampling due to
polar orbit

 Narrow swath due to rapid
movement of satellite and SNR
requirements

 Strong attenuation in rainfall
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Disadvantages



TRMM Precipitation Radar (14 GHz)

Storm Vertical Structure
Typhoon Paka (1997)
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CloudSat Cloud Profiling Radar (94 GHz)

Cloud Vertical Structure & Light Rain
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Interpreting the Measurements

EUMeTrain Precipitation 2015 - L'Ecuyer 12

Pr =
p 3Ptg

2FQh

1024ln(2)l 2

K 2

r2
Di

6

  Unit
Volume

å



The Relationship Between Z and R
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The Relationship Between Z and R
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 Atmospheric gases and hydrometeors also absorb and

scatter radiation out of the radar beam as it propagates from

the radar to the target volume and back.

 κl is the attenuation coefficient expressed in dB per km

 Attenuation increases with increasing frequency (or

decreasing wavelength) and is, therefore, important for all

satellite radars

Attenuation
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Reflectivity
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Attenuation
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Courtesy:  K.-S. Kuo, H. 

Carty, and E. Smith

Comparing CloudSat and TRMM
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A Few Highlights



CloudSat: How Often Does it Rain?
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TRMM: How Much Does it Rain?
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Microwave Imager 10 Year Climatology

Precipitation Radar 10 Year Climatology
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TRMM: How is Tropical Rainfall 

Changing?
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CloudSat and TRMM:  How Hard

Does it Rain?

 R < 1 mm h-1: CPR accumulation is 0.47 mm/d, PR’s is 0.19

 R > 5 mm h-1: CPR accumulation is 1.35 mm/d, PR’s is 1.86
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Summary
 Despite some challenges, space-borne radars offer a

valuable source of global precipitation measurements.

 TRMM rainfall estimates are based on reflectivity with
an attenuation correction.

 CloudSat rainfall estimates are based on attenuation
with a reflectivity correction.

 The combination of TRMM and CloudSat are capable of
detecting the full spectrum of global precipitation
including snowfall.

 Given their success to date, spaceborne radars with
new capabilities (Doppler, multiple-frequencies, and
time-resolution) are being proposed for the future.
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The Next Generation: GPM

TRMM Single-Frequency GPM Ka/Ku-band

Differences in

attenuation at

14 and 35 GHz

allow DSD to

be retrieved.



Next Generation: EarthCARE

 The combined ESA/JAXA

EarthCARE mission will

carry the next generation

CPR with a higher vertical

resolution (100 m), better

sensitivity (-35 dBZ), and

crude Doppler capability

(~1 m s-1 resolution).

 EarthCARE resembles the

A-Train on one satellite.
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