Shallow Clouds and Related Weather Phenomena

Wilfried Jacobs

Deutscher Wetterdienst

Meteorological Training and Conference Center

Email: wilfried.jacobs@dwd.de

- 1. Physical background
- 2. Fog and low stratus
 - Channels and products
 - Interpretation and examples
- 3. Precipitation and icing
 - Channels and products
 - Interpretation and examples
- 4. Summary
- 5. Homework

Fog – low stratus

Basic rules for some solar channels

- Netto reflectance
 - 0.6 (and 0.8) µm higher with increasing thickness (more water, more icing (T<0° C))
 - 3.9ref µm (solar part)
 - Scattering (occurs at the drop surface) proportional to r²
 - Absorption (occurs inside the drop) proportional to r³
 - Netto reflectance: $(r^2/r^3 = 1/r)$ proportional to 1/r
 - r = effective droplet radius

- 3.9 μm: Mainly near the cloud top or in the upper cloud's part
- 1.6 µm: Pennetrates deeper into the cloud
- 0.6 µm: Only for small droplets in the upper parts of the cloud. However, with increasing droplet size more and more to the ground, increasing influence by the soil.
- With decreasing drop size better identification, however, in any case cloud layer of less than 200 meters difficult (e.g., thin fog layers, especially radiation fog).

Reflectance of different solar channels

Source: EUMeTrain-CAL-Module: http://www.eumetrain.org/data/2/253/index.htm

Fog/low stratus: HRV – 19/10/2014, 09 UTC (Most powerful for detailed considerations)

Fog/low stratus: 0.6µm – 19/10/2014, 09 UTC

(higher contrast, however, thinner fog/St-layers difficult to indentify)

Fog/low stratus: 0.8µm – 19/10/2014, 09 UTC

(less contrast, however, thinner fog/St-layers easier to identify)

Fog/low stratus: 1.6µm – 19/10/2014, 09 UTC

(St, fog brighter, thinner fog/St-layers easier to identify than with 0.8µm)

FOG/low stratus: $(10.8 - 3.9) \mu m$

- Small water droplets (fog, low stratus) exhibit a lower emissivity in the 3.9 µm channel than in the 10.8 µm channel.
- Night: Differences (10.8 3.9) µm show positive values (normally up to plus 10 K)
- This will be used for the detection of fog and and low stratus during night time.
- Recommended for fog/low St-detection during the night
- Hint for practical work: During the night cloud top temperature about -10 degrees and no clouds above
 drizzle possible, may be freezing

$(10.8 - 3.9) \mu m 0 to 10 K, 19/10/2014, 05 UTC$ (low level water clouds (St, fog): relatively bright (night time))

(10.8-3.9) μm (0 to 10 K) 19/10/2014, 06 UTC (low level water clouds (St, fog) bright (night time) / around sunrise (difficult to identify)

(10.8-3.9) μm, -30 to 0K) 19/10/2014, 10 UTC (low level water clouds (St, fog), after sunrise grey to almost black, HRV or RGB "day microphysik better

FOG / St: RGBs (during the day)

RGB (Day Natural Colours)

R = NIR1.6

G = VIS0.8

B = VIS0.6

RGB (Day Natural Colours, 1.6/0.8/0.6) – 19.10.2014, 09 UTC (low level water clouds (St, fog)

Low St / fog (thinner layer) appear in pinkish-whitish Low St / fog (thicker layer) appear in whitish-greenish

RGB (Day Natural Colours, 1.6/0.8/0.6), 19.10.2014, 12 UTC (low level water clouds (St, fog)

Which fog/St-areas will probably not dissolve? (Please use the yellow star.)

RGB (Day Natural Colours, 1.6/0.8/0.6), 19.10.2014, 14 UTC (low level water clouds (St, fog)

RGB (Day Natural Colours, 1.6/0.8/0.6), 19.10.2014, 15 UTC (low level water clouds (St, fog) – Shadow / no shadow

RGB (Day Natural Colours, 1.6/0.8/0.6) - enhanced, 19.10.2014, 15 UTC (low level water clouds (St, fog) – Shadow / no shadow

Water and ice clouds, snow: NIR/HRV/HRV (better spatial resolution)

Colour	channel	values
red	NIR1.6	0 +70%
green	HRV	0 +100%
blue	HRV	0 +100%

26-01-2004, 10 UTC: Snow, water clouds (St, fog over SE/E-Europe) (J. Kerkmann, EUMETSAT)

NIR1.6

HRV

HRV

RGB (day solar, also for fog/St)

```
R = VIS0.8 (0-100%, Gamma=1.7)
```

$$G = NIR1.6 (0-70\%, Gamma=1.7)$$

$$B = 3.9ref$$
 (0-30%, Gamma=1.7)

Image processing: Gamma – Principle

- Purpose: Increase amount of information from images
- Processing of brightnesses of pixel
 - Gamma>1: relative high input values expanded, low compressed
 - Gamma<1: Vice-versa

Source: Wikipedia (from 29th October 2014) http://de.wikipedia.org/wiki/Gammakorrektur

RGB (day solar, 0.8/1.6/3.9ref): Interpretation of Colours for Thick Ice and Water Clouds

(J. Kerkmann, EUMETSAT)

Ocean Veg. Land Desert Snow

RGB (day solar, 0.8/1.6/3.9ref), 28.10.2014, 12 UTC

Munich: Thick layer (1000 meter, -1 Grad) of St, fog: whitish

Trappes: thinner layer (500 meter, 5 Grad) of St, fog, whitish-blueish

SW-North Sea: NE-part thicker St, fog

English channel thin St, fog → just about to dissolve

(main contribution by 3.9ref, other channels more influenced by the ground.)

RGB (Night-Composite, during daytime)

$$R = 3.9$$

$$G = 10.8$$

$$B = 12.0$$

RGB (night, 3.9/10.8/12.0), 19.10.2014, 09 UTC St, fog: cyan

Question (marking): Please use the F2-buttom. Which technique do you use for answering the question: "Fog/stratus or low frontal clouds? (one word would be enough.)

RGB (Microphysik-day)

```
R = VIS 0.8
```

G = 3.9 ref (0 to 60%) Gamma = 2.5

B = 10.8 (203 to 323 K) - fog / St: almost no contribution

Fog/low stratus: 0.8µm – 19/10/2014, 09 UTC thinner St/fog layers more difficult to identify than with 3.9 ref

3.9 µm-ref (0 to 60%, Gamma = 2.5), 19.10.2014, 09 UTC St, fog: light-grey to whitish, thinner fog layers (>100m) detecable

RGB Day Microphysik: Interpretation of Colours for Low-level Clouds

(J. Kerkmann, EUMETSAT)

Thick water cloud (warm rain cloud)

- bright, thick
- large droplets

Thick water cloud (no precipitation)

- bright, thick
- small droplets

Thin water cloud with large droplets

Thin water cloud with small droplets

Ocean

Veg. Land

Fires / Desert

Snow

RGB (Day Microphysik (0.8/3.9ref/10.8), 19.10.2014, 09 UTC St, fog: thinner layer: bright greenish / thicker layer: pinkish

Small differences possible due to different image processing or different hardware

RGB (Day Microphysik (0.8/3.9ref/10.8), 12.10.2014, 09 UTC thicker layer: pinkish (some drizzle/light rain), will remain

RGB (Day Microphysik (0.8/3.9ref/10.8), 12.10.2014, 10 UTC thicker layer: pinkish (some drizzle/light rain), will remain

RGB (Day Microphysik (0.8/3.9ref/10.8), 12.10.2014, 11 UTC thicker layer: superimposed by higher clouds

FOG / St: RGBs (day & night)

Cloud phase: Differences between (12.0 – 10.8) µm

The channel 12.0 µm absorbs slightly more for ice clouds than the channel 10.8 µm. Although the difference is small (-4 to +2 K) water clouds and ice clouds can be distinguished.

(Source: EUMeTrain: http://www.eumetrain.org/data/2/253/navmenu.php?tab=3&page=2.0.0)

RGB (Dust Microphysik–24h)

R = 12.0-10.8 (-4 to +2 K) – phase and optical thickness

G = 10.8-8.7 (0 to +15 K, Gamma = 2.5) – phase and optical thickness

B = 10.8 (261 to 289 K) – cloud top temperature

RGB "Dust" (IR12.0-IR10.8/IR10.8-IR8.7/IR10.8) Interpretation for middle and low clouds

(J. Kerkmann, EUMETSAT)

thick

Thick water cloud, middle altitude

thin

Thin water cloud, middle altitude

cold

Cold water cloud (low)

warm

Warm water cloud (low)

Ocean

Desert-warm

Desert-cold

Land-warm

Land-cold

(12.0-10.8) μm,19.10.2014, 09 UTC (St, fog): brighter

$(10.8-8.7) \mu m$, Gamma = 2.5, 19.10.2014, 09 UTC (St, fog): brighter

Thickness of fog and St difficult to distinguish

10.8 μm, 19.10.2014, 09 UTC (St, fog): a bit brighter (colder)

Fog, St difficult to indentify

RGB (24h-Cloud-Microphysik (12.0-10.8 / 10.8-8.7 / 10.8) μm 19.10.2014, 09 UTC

Cloud top (Nowcasting-SAF 19.10.2014, 09 UTC (St, fog): violet: < 600 m / dark brown: 600-1200 m red-brown: a few higher clouds superimposing

FOG / St: RGBs (during the night)

RGB (Cloud Microphysik – night)

```
R = 12.0-10.8 (-4 to +2 K)
G = 10.8-3.9 (0 to +10 K) Gamma = 0.5
B = 10.8 (243 to 293 K)
```

RGB Night-Mikrophysik (IR12.0-IR10.8, IR10.8-IR3.9, IR10.8 Colour interpretation

(J. Kerkmann, EUMETSAT)

(10.8 – 3.9) μm (0 to 10 K) 19/10/2014, 05 UTC (St, fog): bright (night time))

RGB (Night-Microphysik (12.0-10.8 / 10.8-3.9 / 10.8) µm 19.10.2014, 05 UTC

(fog/St: light green, small contributions from red and blue)

RGB (Night-Composite)

$$R = 3.9$$

$$G = 10.8$$

$$B = 12.0$$

RGB (night, 3.9/10.8/12.0), 19.10.2014, 05 UTC St, fog: redish to pinkish

Shallow clouds and precipitation

How can we detect from space the size of microscopic cloud particles? (D. Rosenfeld)

Channel 4, 3.9 μ m, absorbs even more solar radiation than Channel 3, 1.6 μ m. Ice absorbs more strongly than water at 3.9 μ m.

Components Day Microphysik (06 / 3.9ref / 10.8)

- 1. R = VIS 0.8: Visible brightness, reflecting more solar radiation for thicker clouds with more water and ice
- 2. G = 3.9 ref:
 - Cloud particle size and phase (water or ice), having larger drops for clouds with greater depth. Drops appear larger when freezing at temperatures that can range between 0 and -38°C.
 - brighter with smaller particles
- 3. B = 10.8: Temperature, lower for higher tops (image not inverted!)

RGB Day Microphysik: Interpretation of Colours for Mid-level Clouds

(J. Kerkmann)

Ocean

Fires / Desert

Veg. Land

Snow

RGB Day Microphysik: Interpretation of Colours for Low-level Clouds

(J. Kerkmann)

Veg. Land

Ocean

Fires / Desert

Snow

Example: 27-10-2014, 12 UTC (RGB "Day Microphysik")

- +8 degree Mixture (thin water clouds with small and large droplets, precipitation possible)
- -20 degree: Supercooled thick water water cloud, small droplets → moderate icing
- About -5 degree:
 Supercooled thin/thick water cloud with small and large droplets → precipitation possible and icing!
- 4. +10 degree: Water cloud, small droplets
- 5. +8 degree: Thick water cloud, small droplets fog/St-layer about 700 meters.. Near the English South coast light drizzle.
- 6. About +12 degree: Mixture (think/thick water clouds (warm rain cloud), large droplets). Partly precipitation.

Example 25./26.08.2014, 12 UTC

RGB "Day Microphysik" - precipitation

Overview: RGB "Day Microphysik": 25-08-14, 12 UTC

- Thick low water cloud, big drops precipitation likely, Temp between 0 and +10 degree
- 2. Supercooled water (-10 to -20 degree): Icing
- 3. High extending ice cloud, compact: Shower
- 4. High extending ice clouds (WCB): Partly heavy rain (No 65, over UK)

25-08-2014, 12 UTC: ww / Day Microphysik

26-08-2014, 12 UTC: Day-Microphysik

Please use the F2-Buttom (Chat) and tell us which cloud type and weather you expect for cloud category 1 and 2.

26-08-2014, 12 UTC: Day-Microphysik

- 1. Low water cloud, thick, precipitation (drizzle, partly light rain, about 0 degree)
- 2. Supercooled water cloud (-10 to -20 degree, some rain, icing!)
- 3. Thick water clouds, however, also partly ice clouds, icing
- 4. Partly supercooled water clouds, partly ice clouds, icing

26-08-2014, 12 UTC: ww + T in 850 hPa (front over Germany)

Summary

Recommended Schemes for RGB Image Composites (Interpretation: Corresponding colour schemes)

RGB	Applications	Time
1.6/0.8/0.6	Vegetation, snow, fog (thickness)	Day
(Day Natural Colour)	whitish-pinkish: thicker fog/St	
	whitish: thinner fog/St	
1.6/HRV/HRV	Snow, fog (better spatial resolution)	Day
	similar to "Day Natural Colour"	
0.8/3.9ref/10.8	Cloud diagnosis (ice, water clouds),	
(Day Microphysik)	thickness of clouds, icing, precipitation	Day
	yellow: thick cloud super cooled water (icing)	
	green (bright/dark): thin cloud, super cooled water (icing)	
	violet: warm water cloud (drizzle)	
	whitish-greenish: thinner fog, St / pinkish-whitish: thicker fog/St	
0.8/1.6/3.9ref (day solar)	Snow, fog	Day
	whitish: thicker fog, St / whitish-bluish: thinner fog, St	
12.0-10.8/10.8-3.9/10.8	Cloud diagnosis, fog	Night
(Night Microphysik)	whitish: As brighter as thicker (better for fog, St during the night)	
12.0-10.8/10.8-8.7/10.8		
(Day Microphysik-24h)	Dust, thin clouds less suitable for fog/St	Day&Night
	DWD	

Explanations to (homework / quizzes), next steps

- 1. Two images for interpretation like we did here
- 2. One set of multiple choice questions (about basics)
- 3. Please consider to deliver your homework by 18th November
- 4. Certificates (online students) will be distributed by mid of December, at latest
 - Email attachment
 - If you need the original please tell me
 - Just for precaution: Address

Langen, 24-01-2013, after freezing rain, followed by snow (T = -10 degree)

