

Soil moisture and drought monitoring

EUMETRAIN event week, May 30th 2023

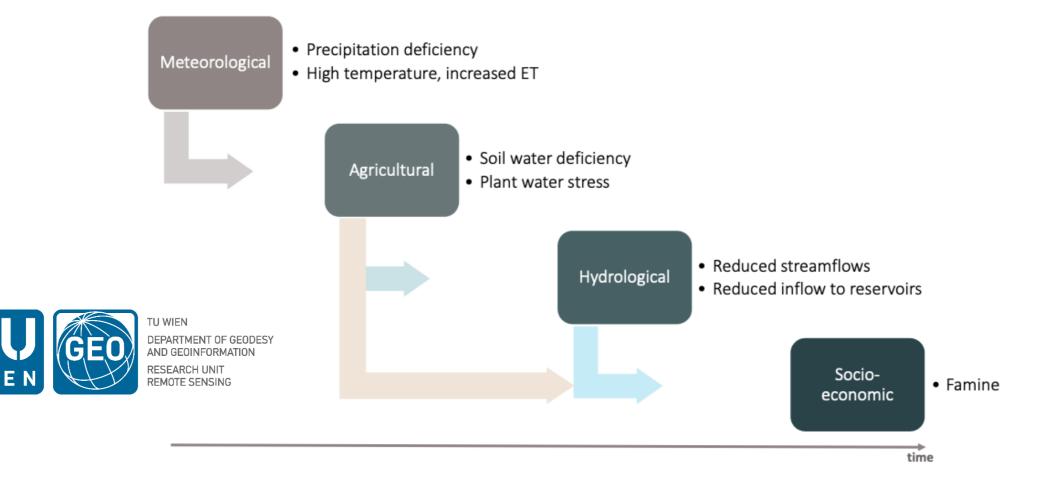
David Fairbairn (ECMWF), Patricia de Rosnay (ECMWF), Mariette Vreugdenhil (Tu Wien), Sebastian Hahn (Tu Wien), Apostolos Giannakos (Geosphere Austria), Luca Brocca (IRPI), Silvia Pucca (Italian civil protection)

Contents

- 1. Background
- 2. H SAF soil moisture products for drought monitoring
 - Case study of the 2022 European summer drought
 - Trends in the CDR
- 3. Building drought indices
- 4. Summary

Slido Join us at #SMdrought

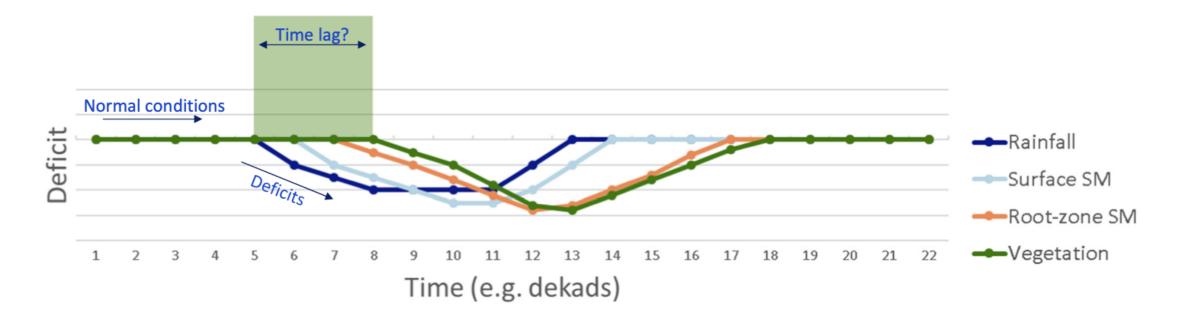
9:41 AM		ul ≎ ■
app.sl	li.do/event/2E3dbDyB5hEtWT	©
≡	Drought_trends	පී
Ç	⊃Q&A ılı Pol	ls
seem	r country of origin, does it like the frequency of hts has	0 es
0	Decreased	
0	Increased	
0	Neither increased nor decreased	
	Send	
	Voting as <u>Anonymous</u>	
	slido	



CECMWF

1. Background

What is a drought?

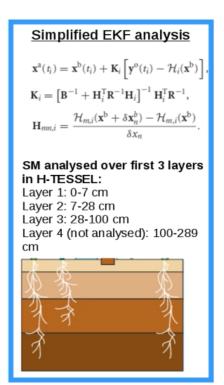


Slide from Mariette Vreugdenhil

Tracking rainfall deficits through the water cycle

Slide from Mariette Vreugdenhil

H SAF SM data sets


Surface SM products

- ASCAT surface SM climate data records (12.5 km resolution) ASCAT SSM CDR v7 12.5 km (H119) ASCAT SSM CDR v7 EXT 12.5 km (H120)
- ASCAT CGLS 10-day product (12.5 km resolution)

Root-zone SM products

- ASCAT-derived root-zone SM near-real-time product (10 km resolution) RZSM-ASCAT-NRT-10km (H26) - operational
- ASCAT-derived root-zone SM climate data record (10 km resolution) RZSM-DR2019-10km (H145, 1992-2022) – available as demo product

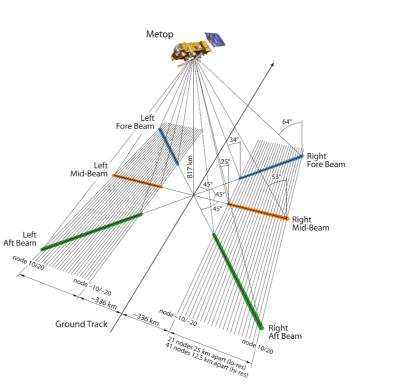
Download and documentation

Downloading data First register with H SAF: <u>https://hsaf.meteoam.it/User/Register</u> to obtain username and password All H SAF data available to download via the H-SAF website (near-real-time) or the ftp (data records)

Documentation:

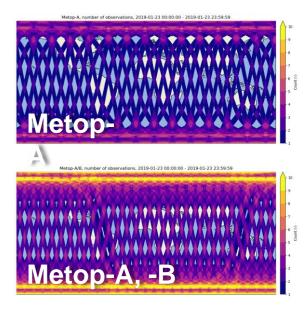
H SAF Website: <u>https://hsaf.meteoam.it/Products/ProductsList?type=soil_moisture</u> ATBD (Algorithm theoretical baseline), PUM (Product user manual), PVR (Product validation report)

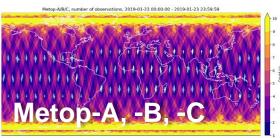
Training (Lecture notes and download/visualization examples) H SAF github training page: <u>https://github.com/H-SAF/5th_hsaf_user_Workshop</u> EUMETRAIN event week: <u>https://eumetrain.org/index.php/event-weeks/h-saf-event-week-2019</u>



Advanced Scatterometer (ASCAT) on-board Metop

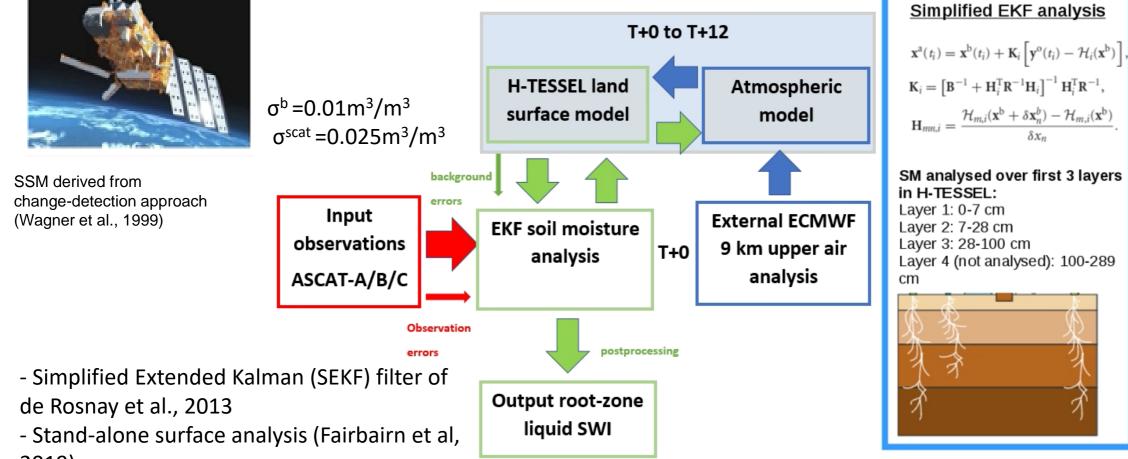
- Sensor characteristics
 - Active microwave scatterometer
 - Frequency: C-band, 5.255 GHz
 - Polarisation: VV
 - Spatial resolution: 25/50 km
 - Antennas: 2 x 3
 - Swath: 2 x 500 km
 - Multi-incidence: 25-65°
 - Daily global coverage: 82%


Slide from Sebastian Hahn

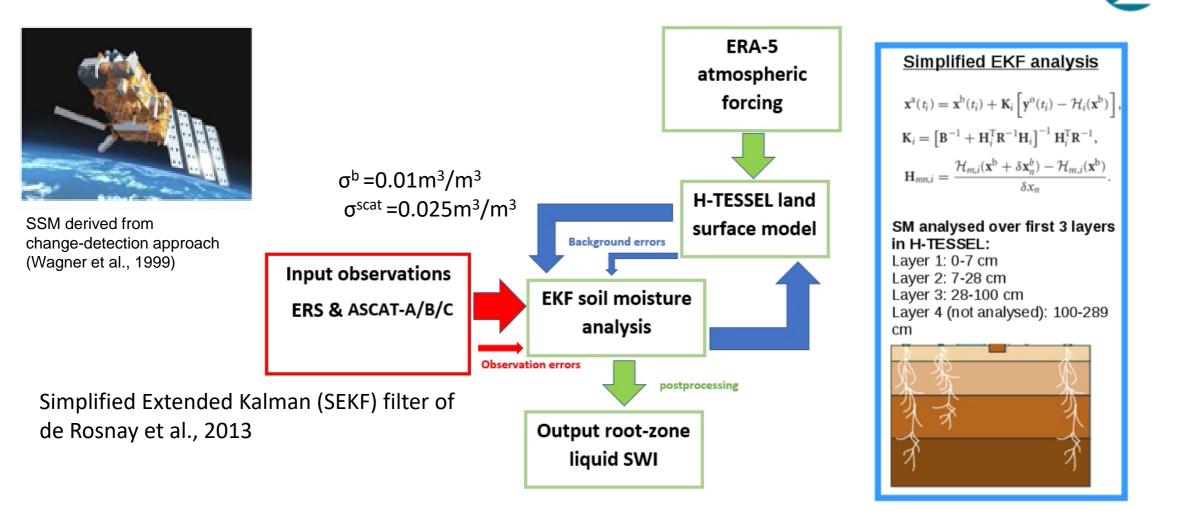


Figa-Saldana, et al., The advanced scatterometer (ASCAT) on the meteorological operational (MetOp) platform: A follow on for European wind scatterometers, Canadian Journal of Remote Sensing, 28(3), 404–412 (2002). http://dx.doi.org/10.5589/m02-035

EUMETSAT HSAF SUPPORT TO OPERATIONAL HYDROLOGY AND WATER MANAGEMENT


Spatial coverage in 24 h

Root-zone SM NRT product

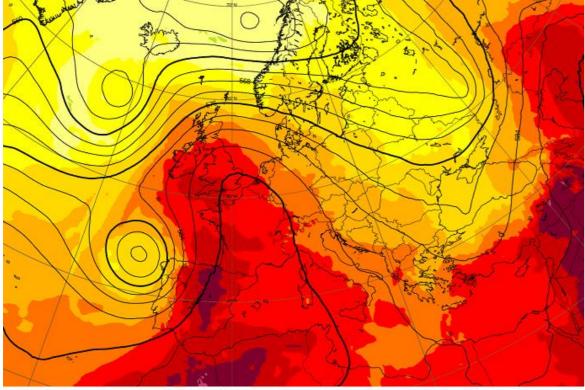


- 2019)
- Daily (00 UTC) global root-zone liquid soil wetness index at 10 km sampling
- Operational since 23rd March 2022 with 12-hour latency
- Near-real-time product (identifier): RZSM-ASCAT-NRT-10km (H26)

New root-zone SM data record

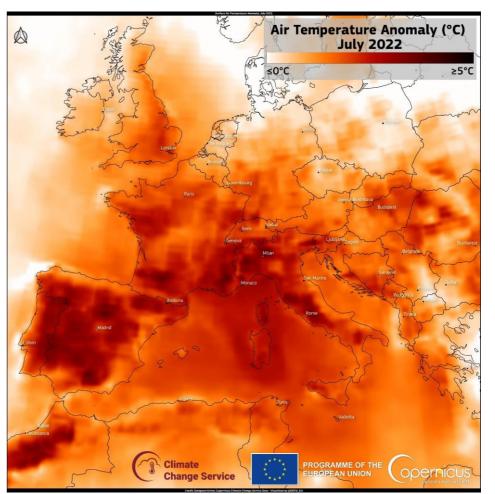
- Daily (00 UTC) global root-zone liquid soil wetness index at 10 km sampling over 1992-2022
- Data record product (identifier): RZSM-DR2019-10km (H145) covers 1992-2022
- Available as demonstrational product (subject to review)

EUMETSAT


MANAGEMENT

HYDROLOGY AND WATER

2. Case study: 2022 summer drought in Europe


Synoptic setup and air temperatures

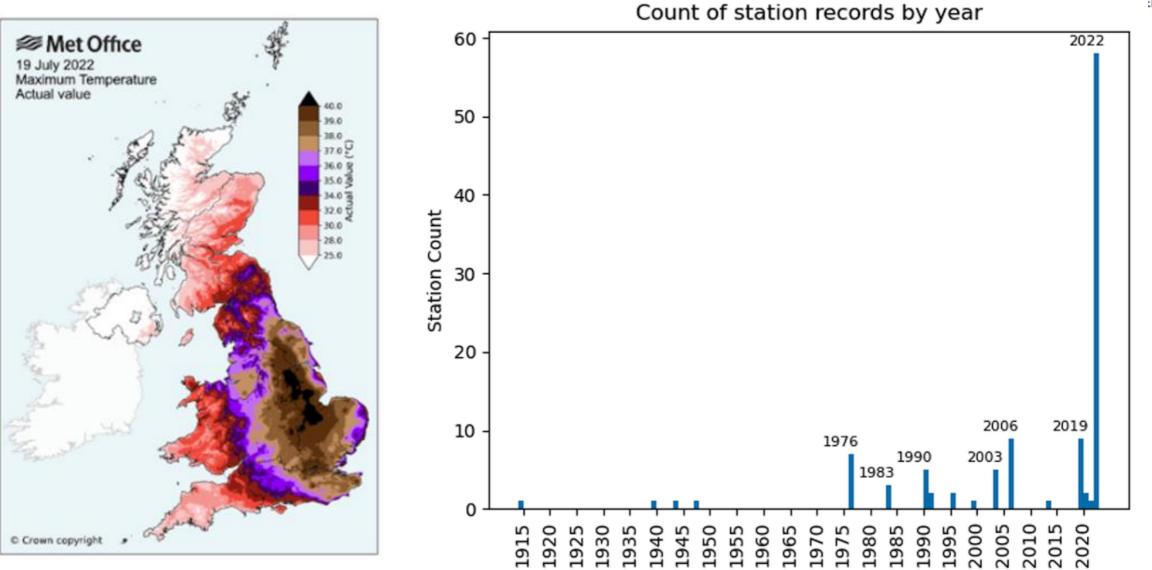
High pressure dominated most of Europe during the period, bringing with it drier than usual conditions.

850 hPa temperature (°C)

-8 -4 0 4 8 12 16 20 24 28 32 36 40 https://www.ecmwf.int/en/about/media-centre/focus/2022/updateeuropean-heatwave-july-2022 Air temperatures anomalies reached 3-5°C over many parts for July and August

https://www.copernicus.eu/en/news/news/observer-2022-year-extremes

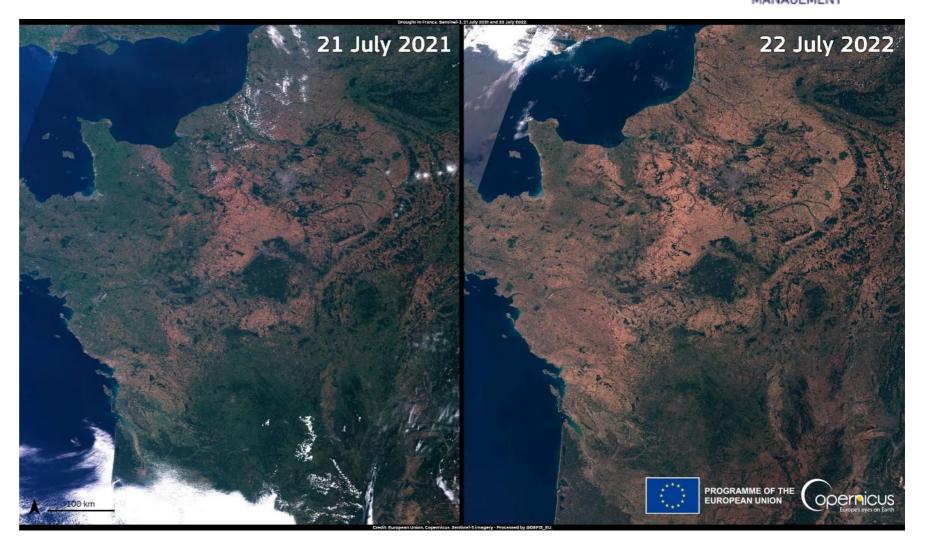
CECMWF


EUMETSAT

MANAGEMENT

HYDROLOGY AND WATER

Temperature records in the UK

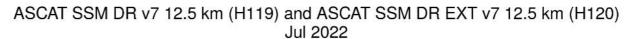


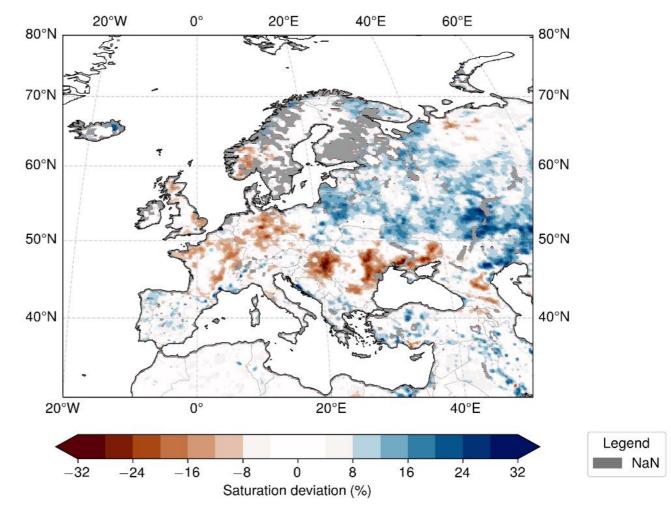
https://www.carbonbrief.org/guest-post-a-met-office-review-of-the-uks-record-breaking-summer-in-2022/ CECMWF

CECMWF

Impact on vegetation

- The drought conditions were evident from satellite images, such as the comparison of France from July 2021 with July 2022
- In France, 90 out of the 96 administrative "départements" were affected by water restrictions
- Other countries saw similar water restrictions, which lasted into the winter


https://www.copernicus.eu/en/news/news/observer-2022-year-extremes

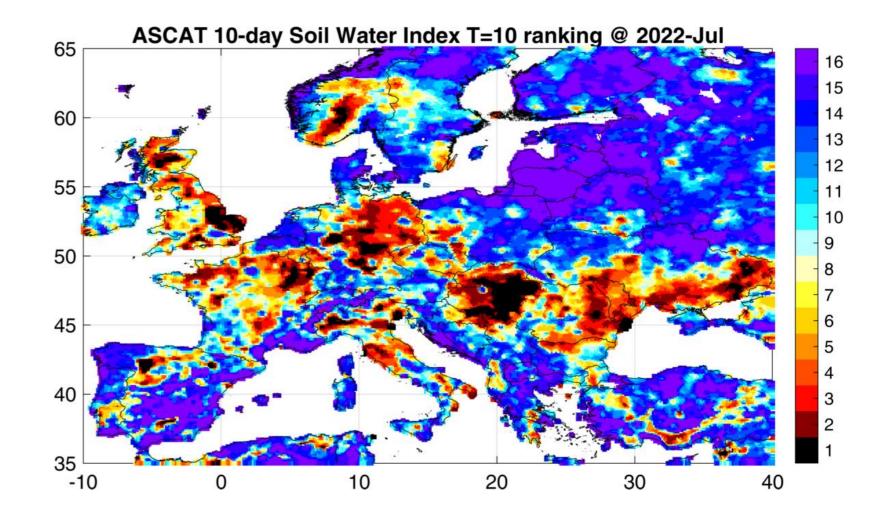

EUMETSAT HSAF SUPPORT TO OPERATIONA HYDROLOGY AND WATER MANAGEMENT

H SAF surface soil moisture anomaly

- Highly negative surface soil moisture anomalies (deviation < -10%) were present over many parts of Europe during July and August.
- Wetter than usual conditions were present over parts of eastern Europe and Scandinavia



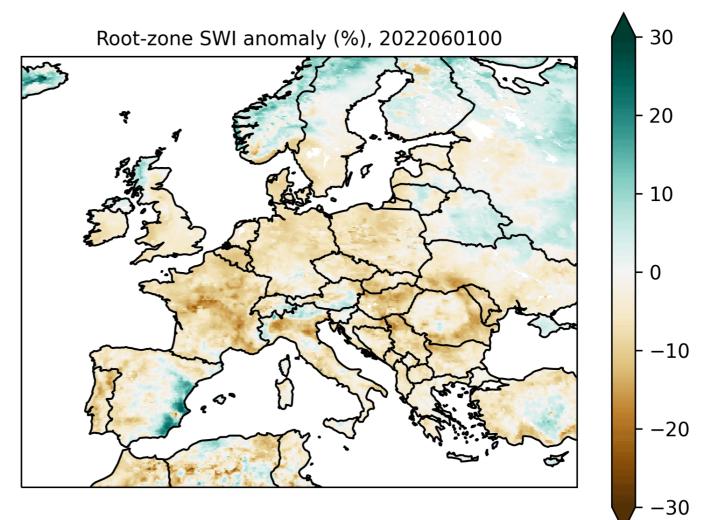
CGLS soil moisture


- The Copernicus Global Land Service (CGLS) Soil Water Index 10-daily SWI 12.5km V3 (SWI10) product is shown, which takes H SAF ASCAT NRT SSM products as input.
- The SWI10 anomalies for July 2022 shows dry conditions in deeper soil layers.

CGLS soil moisture

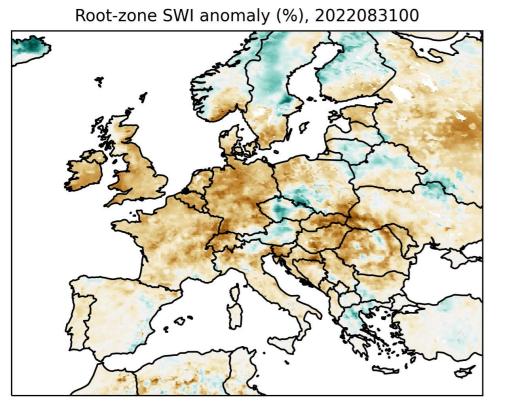
- Map plot shows the ranking of the SWI10 anomaly based on the past 16 years (2007-2022) is given in Figure 5. A ranking of 1 (16) indicates the driest (wettest) July during the period.
- Several parts of Europe were ranked as 1, highlighting the severity and extent of the drought
- This is even more remarkable given that several dry European summers were recorded during the 16-year ranking period (e.g. 2015, 2018, 2019).

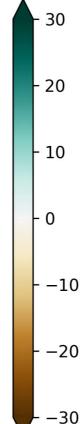
H SAF Root-zone SM anomaly



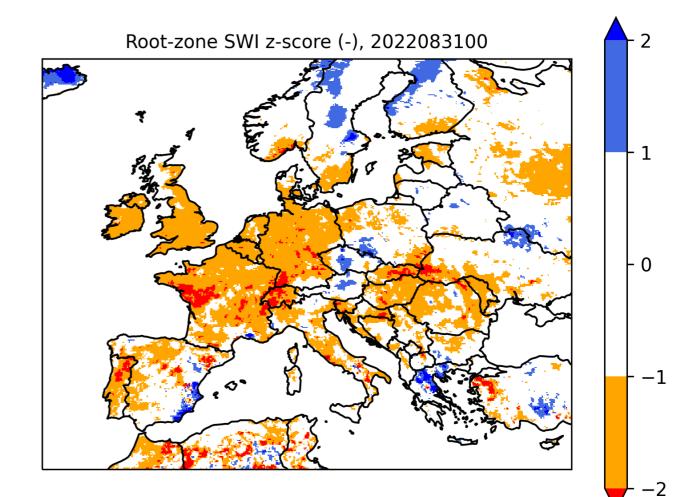
- Data record (H145) available from 1992-2022
- SM layer 3 (28-100 cm) approximates the root-zone
- Daily anomaly (%) for June-August 2022, relative to centred 10-day (dekad) rolling mean (1992-2021)

 $(SM_i - \overline{SM})^* 100.0$

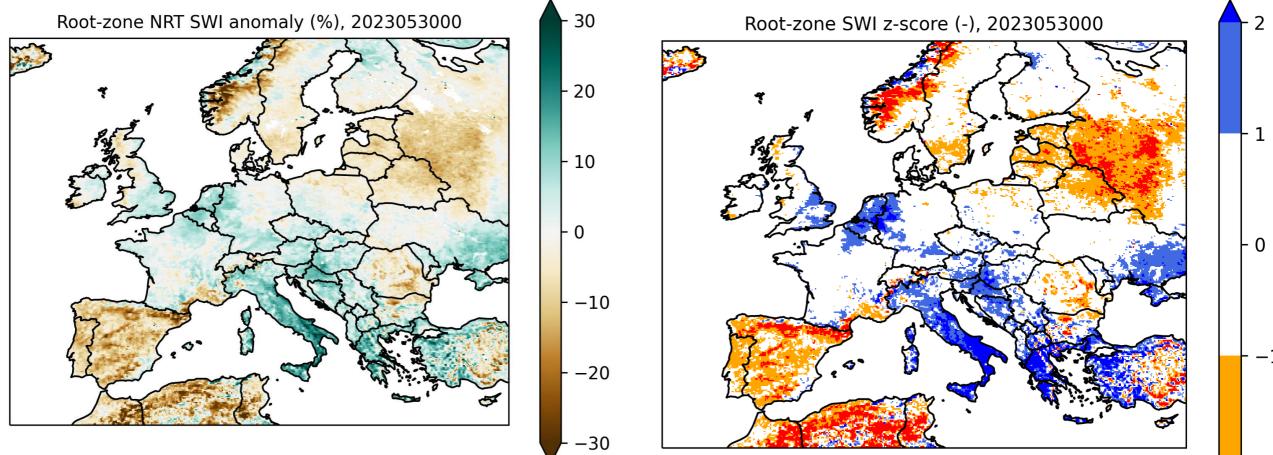

- Extremely dry anomalies develop over most of Europe (<-20%)
- Dipole effect, with wet anomalies over parts of Scandinavia and eastern Europe


H145 layer 3 (28-100 cm depth) anomaly with respect to 1992-2021 mean

H SAF Root-zone SM anomaly


- Z-score based on dekad anomaly relative to 1992-2021 $SM_i \overline{SM}$
- Drought conditions (<-1), Severe drought (<-2)
- Widespread drought by the end of August

 σ



CECMWF

Near-real-time SM anomaly

- For recent anomalies (from 2023), the NRT root-zone SM product (H26) is available •
- Comparison of H26 near-real-time SM (12-hour latency) with H145 SM data record (1992-2021) •
- Drought conditions captured over the Iberian peninsula (z-score<-1) •

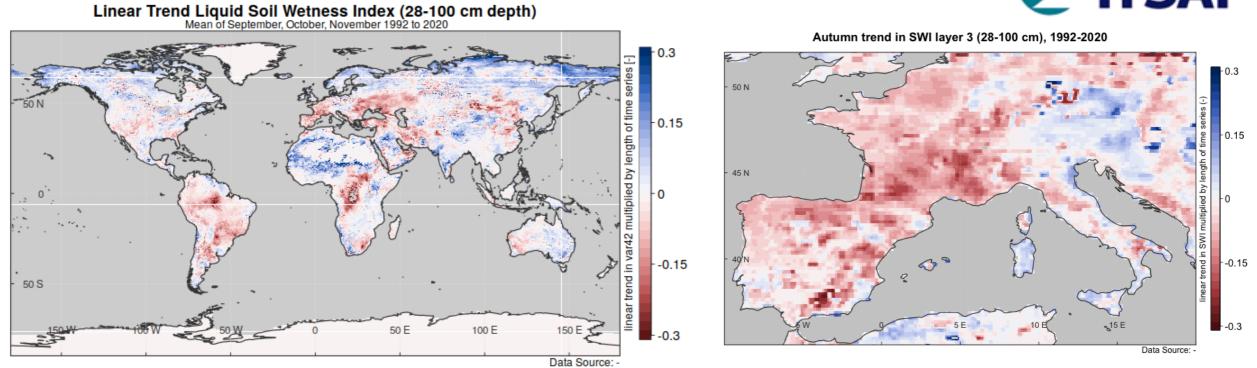
CENTRE FOR MEDIUM RANGE WEATHER FORECASTS

NAGEMENT

Slido question:

#SMdrought

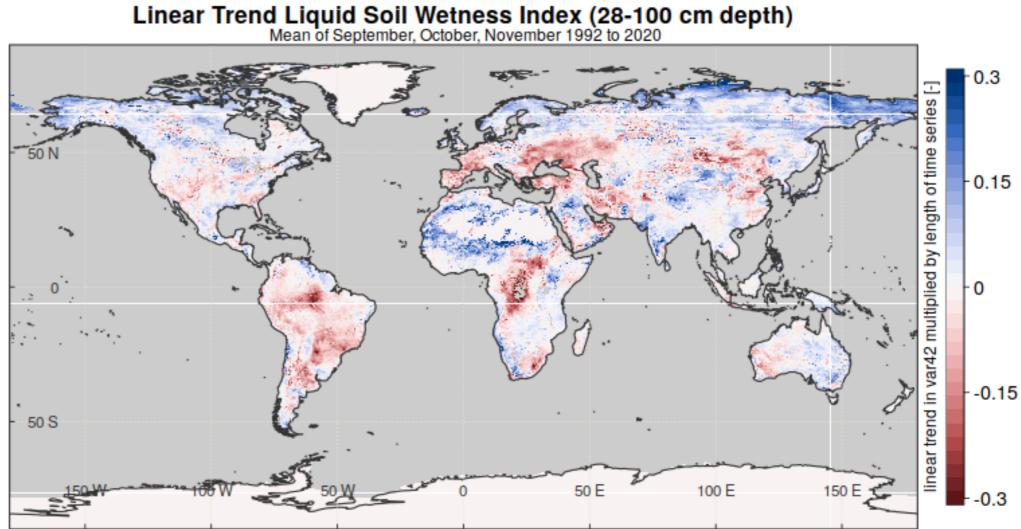
In your country of origin, does it seem like the frequency of droughts has


- 1. Decreased
- 2. Increased
- 3. Neither decreased nor increased

https://app.sli.do/event/2E3dbDyB5hEtWTs5qe7dvB

Data record trends (1992-2020)

Trends calculated using CMSAF toolbox software (Kothe et al., 2019)


- Soil moisture has decreased by up to 30% in midlatitude summer/autumn months, especially Europe
- Trends suggest that summer droughts are becoming more likely in midlatitudes and some low-latitude regions

Data record trends (1992-2020)

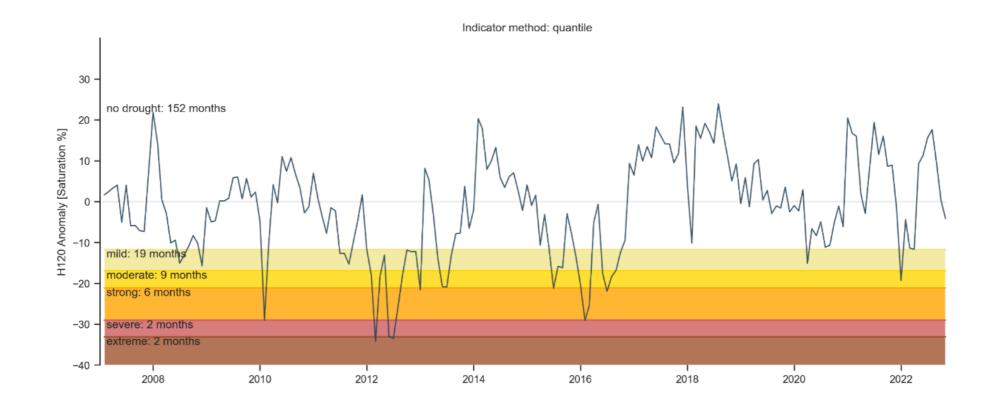
• Slido (#SMdrought): Does your perception of the drought trend in your country of origin agree with the SM trend on the map (assuming negative trend implies drought more likely)?

Data Source: -

3. Building drought indices

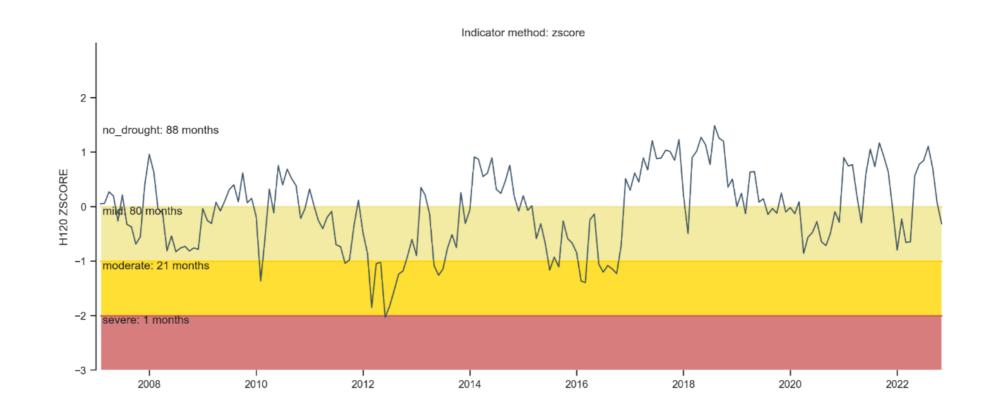
Anomaly indicators:

Vreugdenhil et al. 2022


Indicator	Equation		Common thresholds	
Anomalies and percentiles	$SMA_{k,i} = SM_{k,i} - \overline{SM}_i$	No drought	20% or more	
(Champagne et al., 2011; Nicolai-Shaw et al., 2017; van		Mild	10-20%	
Hateren et al., 2021; Vroege et al., 2021)		Moderate	5-10%	
		Significant	2-5%	
		Severe	1-2%	
		Extreme	Lower than 1%	
Z-scores	$Z_{k,i} = (SM_{k,i} - \overline{SM}_i) / \sigma_i$	Mild	More than -1	
(Cammalleri et al., 2017)		Moderate	-2 to -1	
		Severe	Lower than -2	
Standardized Soil Moisture Index (SSI, ESSI, SSMI)	Monthly average soil moisture; Fitted statistical distribution	No drought	-0.84 or more	
(Carrão et al., 2016; Xu et al., 2018; Ford and Quiring, 2019;	function with Kernel Density Estimator; Percentile value	Mild	-0.84 to -1.00	
Modanesi et al., 2020)	transformed to standard normal cumulative probability	Moderate	-1.01 to -1.50	
	distribution function	Severe	-1.51 to -2.00	
		Extreme	Lower than -2.0	
Soil Moisture Anomaly Percentage Index (SMAPI)	SMAP	No drought	-5% or more	
(Liu et al., 2019)	$I_{k,i} = \frac{SM_{k,i} - \overline{SM_i}}{\overline{SM_i}} \times 100\%$	Mild	-15 to -5%	
		Moderate	-30 to -15%	
		Severe	-50 to -30%	
		Extreme	More than -50%	
Soil Moisture Deficiency Index (SMDI)	$SMDI_{k, i} = 0.5 \cdot SMDI_{k, i-1} + \frac{SD_{k, i}}{50}$	No drought	0 or more	
(Pablos et al., 2017; Xu et al., 2018; Fang et al., 2021)	$SD_{k,i} = \frac{SM_{k,i} - SM_{median,i}}{SM_{median,i}} \cdot 100 \text{ if } SM_{k,i} > SM_{median,i}$	Mild	-1 to -0.01	
	$\begin{split} SD_{k,i} &= \frac{SM_{k,i} - SM_{median,i}}{SM_{maxin} - SM_{median,i}} \cdot 100 \ if \ SM_{k,i} > SM_{median,i} \\ SD_{k,i} &= \frac{SM_{k,i} - SM_{median,i}}{SM_{median,i}} \cdot 100 \ if \ SM_{k,i} < SM_{median,i} \end{split}$	Moderate	-2 to -1.01	
		Severe	-3 to -2.01	
		Extreme	-4 to -3.01	
Soil Water Deficit Index (SWDI)	$SWDI = \frac{SM - SM_{PC}}{SM_{PC} - SM_{WP}} \cdot 10$	No drought	0 or more	
(Martínez-Fernández et al., 2016, 2017; Mishra et al., 2017;		Mild	-2 to -0.01	
Pablos et al., 2017; Paredes-Trejo and Barbosa, 2017; Bai		Moderate	-3 to -2.01	
et al., 2018; Fang et al., 2021; Paredes-Trejo et al., 2021; Zhou		Severe	<-3	
et al., 2021; Cao et al., 2022; Chatterjee et al., 2022; Wu et al.,		Extreme		
2022)	ND17 ND17			
Soil Moisture Agricultural Drought Index (SMADI)	$VCI = \frac{NDVI_i - NDVI_{max}}{NDVI_{max} - NDVI_{min}}$	No drought	0 to1	
(Sánchez et al., 2016; Mercedes-Salvia et al., 2021; Souza	$MTCI = \frac{IST_i - LST_{max}}{LST_{max} - LST_{min}}$	Mild	1.01 to 2	
et al., 2021)	$SMCI = \frac{SM_{max} - SM_i}{SM_{max} - SM_{min}}$	Moderate	2.01 to 3	
	$SMADI_i = SMCI_i \frac{MTGI_i}{VCI_{i+1}}$	Severe	3.01 to 4	
		Extreme	More than 4	

Quantiles for Mozambique

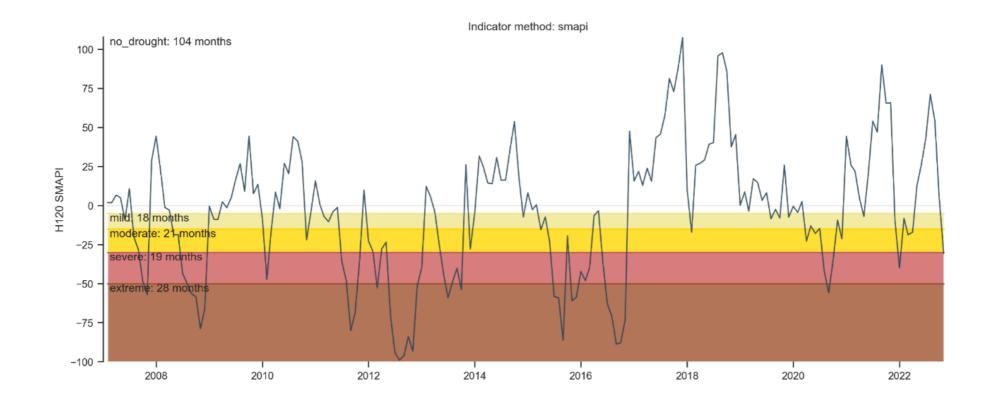
Surface SM % anomaly for H119/H120


Slide from Mariette Vreugdenhil

CECMWF

Z-score for Mozambique

Z-score (-) for H119/H120


Slide from Mariette Vreugdenhil

C ECMWF

Soil Moisture Anomaly % Index

SM % index for H119/H120

Slide from Mariette Vreugdenhil

CECMWF

VS/AS Activity – Soil moisture anomaly workflows

- Cluster: Soil Moisture
- Host institute: TU Wien
- VS Supervisors: M. Vreugdenhil W. Wagner, S. Hahn

Motivation

- Weather-related disasters have increased in frequency and severity in the past decades
- Condensation of large volume of satellite soil moisture data to relevant information for the public and decision maker to raise awareness of imminent drought and flood events
- Request by SAF Network ٠

Objectives

- Investigate state-of-the-art methods to compute ٠ soil moisture anomalies
- Create multiple soil moisture anomaly maps using H SAF ASCAT soil moisture products and compare them against historic drought and flood events ٠
- Make recommendations on which anomaly metrics ٠ are best suited for highlighting drought and flood events
- Develop a workflow that produces soil moisture anomaly maps from H SAF soil moisture products ٠
- Provide workflow as open source sharing it with ٠ users

30

Summary

Summary

- SM products can be used to monitor droughts. The surface SM is more sensitive to the meteorological conditions, whilst the root-zone SM has a long memory and is more related to vegetation stress.
- Long-term climate data records (CDRs) demonstrated the exceptional severity and extent of the 2022 summer drought over Europe
- Near-real-time root-zone SM anomalies capture the current drought over the Iberian Pensinsula
- CDR trends in Europe indicate that soil moisture has become up to 30% drier in summer/autumn over the last 30 years
- Different indices exist for drought monitoring, including the % anomaly, z-score and SM anomaly % index.
- Although all the metrics capture droughts, they may differ in severity for individual events
- SM is an important drought indicator, but other variables are important too (next presentation gives more details)

CECMWF

De Rosnay, P., Drusch, M., Vasiljevic, D., Balsamo, G., Albergel, C. and Isaksen, L., 2013. A simplified Extended Kalman Filter for the global operational soil moisture analysis at ECMWF. Quarterly Journal of the Royal Meteorological Society, 139(674), pp.1199-1213.

D. Fairbairn, P. de Ronsay, and P. Browne, "The new stand-alone surface analysis at ECMWF: Implications for land-atmosphere DA coupling," J. Hydrometeor, 2019. <u>https://doi.org/10.1175/JHM-D-19-0074.1</u>

H SAF (2020): Scatterometer Root Zone Soil Moisture (RZSM) Data Record 10km resolution - Multimission, EUMETSAT SAF on Support to Operational Hydrology and Water Management, DOI: 10.15770/EUM_SAF_H_0008. http://doi.org/10.15770/EUM_SAF_H_0008

Kothe, S., Hollmann, R., Pfeifroth, U., Träger-Chatterjee, C. and Trentmann, J., 2019. The CM SAF R Toolbox—a tool for the easy usage of satellite-based climate data in NetCDF format. ISPRS International Journal of Geo-Information, 8(3), p.109.

Simmons, A.J., Willett, K.M., Jones, P.D., Thorne, P.W. and Dee, D.P., 2010. Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences from reanalyses and monthly gridded observational data sets. Journal of Geophysical Research: Atmospheres, 115(D1)

Vreugdenhil, M., Greimeister-Pfeil, I., Preimesberger, W., Camici, S., Dorigo, W., Enenkel, M., Van Der Schalie, R., Steele-Dunne, S. and Wagner, W., 2022. Microwave remote sensing for agricultural drought monitoring: Recent developments and challenges. *Frontiers in Water*, *4*, p.205.

