The H-SAF precipitation products and their use for severe event monitoring

Federico Porcù

Department of Physics and Astronomy – University of Bologna

Silvia Puca Italian Civil Protection Department

outline

- Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF);
- H-SAF Precipitation Products;
- H-SAF PP application to severe event monitoring;
- H-SAF PP validation;
- H-SAF webpage and product download.

H-SAF objectives

- To provide operational high quality level 2/3 products and Management develop new satellite products from existing and future satellites with time and space resolution to satisfy the needs of operational hydrology:
 - precipitation (liquid, solid, rate, accumulated);
 - soil moisture (large-scale, local-scale, surface, roots region);
 - snow parameters (cover, melting conditions, water equivalent).
- To perform independent validation of the products for civil protection purposes (floods, landslides, avalanches), and for monitoring water resources. The activity includes:
 - o downscaling/upscaling from observed/predicted fields to basin level;
 - fusion of satellite measurements with data from radar and raingauge networks;
 - o assimilation of satellite-derived products in hydrological models;
 - assessment of the impact of the satellite-derived products on hydrological applications.

H-SAF plan

H-SAF Development Phase (2005-2010), completed on August 31, 2010.

Continuous Development and Operation Phase (CDOP) (2010-2017):

- CDOP-1 (2010-2012) ended in February 2012.

To improve algorithms and processing scheme for H-SAF area (25° N to 75° N - 25° W to 45° E);

- CDOP-2 March 2012 – February 2017.

To extend algorithms and validation to Full Disk area and to new satellites.

All the products are being generated routinely for the H-SAF area on a H-SAF operational chain in NRT mode.

Products are validated by the Product Validation team and their impact in hydrology models is evaluated by the Hydrological Validation Team.

H-SAF consortium

Country		Units in the Country (responsible unit in bold)	Role in the Project
Austria	-	Zentral Anstalt für Meteorologie und Geodynamik	Leader for soil moisture
Belaium	_	Institut Roval Météorologique	
Bulgaria	-	National Institute of Meteorology and Hydrology	
ECMWF	-	European Centre for Medium-range Weather Forecasts	Contributor for "core" soil moisture
Finland	- - -	Finnish Meteorological Institute Helsinki Technical University, Laboratory of Space Technology Finnish Environment Institute	Leader for snow parameters
France	- - -	Météo-France CNRS Centre d'Etudes Spatiales de la BIOsphere CNRS Centre d'études des Environnem. Terrestres et Planétaires	
Germany	-	Bundesanstalt für Gewässerkunde	
Hungary	-	Hungarian Meteorological Service	
ltaly	- - -	Servizio Meteorologico dell'Aeronautica Dipartimento Protezione Civile, Presidenza Consiglio Ministri CNR Istituto di Scienze dell'Atmosfera e del Clima Ferrara University, Department of Physics and Earth Sciences CIMA Research Foundation University of Rome "La Sapienza", Dept. of Electrical Engineering	<u>Host</u> + Leader for precipitation + Leader for Products Validation
Poland	-	Institute of Meteorology and Water Management	Leader for Hydrology Validation
Slovakia	-	Slovenský Hydrometeorologický Ústav	
Turkey	- - -	Turkish State Meteorological Service Middle East Technical University, Civil Engineering Department Istanbul Technical University, Meteorological Department Anadolu University	Contributor for "core" snow parameters

H-SAF soil moisture products

Zentral Anstalt für Meteorologie und Geodynamik

Technische Univ. Wien, Inst. Photogrammetrie & Fernerkundung

European Centre for Medium-range Weather Forecasts

H-SAF snow products

Finnish Meteorological Institute

Turkish State Meteorological Service

Middle East Technical University, Civil Engineering Department

Istanbul Technical University, Meteorological Department

PP developing team

D. Biron (1), E. Cattani (2), D. Casella (2), L. De Leonibus (1), S. Dietrich, F. Di Paola(2), M. Formenton (2), S. Laviola (2), V. Levizzani (2), A. C. Marra (2), D. Melfi (1), A. Mugnai (2), G. Panegrossi (2), P. Sanò (2), F. Zauli (1).

(1) ITAF MET Service

(2) CNR-ISAC

H-SAF current precipitation products

name	Product Description	Algorithm	Status Support to Operational Water Management
H01	Precipitation rate at ground by	Baesian	Operational
PR-OBS-1	MW conical scanners	CDRD	
H02	Precipitation rate at ground by	Neural	Operational
PR-OBS-2	MW cross-track scanners	Network	
H03	Precipitation rate at ground by	Blending	Operational
PR-OBS-3	GEO/IR supported by LEO/MW		
H04	Precipitation rate at ground by	Morphing	Operational
PR-OBS-4	LEO/MW supported by GEO/IR		
H05	Accumulated precipitation at	Time	Operational
PR-OBS-5	ground by blended MW and IR	integration	
H06	Blended SEVIRI Convection area /	Blending +	Pre-
PR-OBS-6	LEO MW precipitation -	NEFODINA	operational

All precipitation products are generated routinely at the CNMCA, Italy CNMCA also manages the Data service for all H-SAF products.

Precipitation from Microwave conical scan satellite (SSMI/S, AMSR) SSM/I Scan Geometry 85 GHz 833 km Altitude 37 GHz 19 and 22 GHz **Footprint Sizes** Scan angle 1400 km Swath 102°

EUMETSAT H-SAF PR-OBS-1 Instantaneous Rain Rate from Conical MW Scan

CIVD 2011 Nov 4 10:57:29 --- Production_SATELLITE_AREA_CNM.C.A-----Algorithm_J.S.A.C._CN.R.---

÷V

H-SAF precipitation product H01 Algorithm

Sanò, P., D. Casella, A. Mugnai, G. Schiavon, E.A. Smith and G.J. Tripoli, 2013: Bayesian estimation of precipitation from space using the Cloud Dynamics and Radiation Database approach. IEEE Trans. Geosci. Remote Sens. 51, 4119–4143.

H-SAF precipitation product H01 Example (Rome flood, 20.10.2011)

Precipitation from Microwave cross-track scan satellite (AMSU/MHS)

EUMETSAT H-SAF PR-OBS-2 Instantaneous Rain Rate from Crosstrack MW Scan

H-SAF precipitation product H02 Algorithm

The CDRD approach is time-consuming for cross-track scanning radiometers. Thus, we have adopted the neural network approach trained with tested physical models, that has been proposed by Chen and Staelin (IEEE-TGRS, 41, 410-417, 2003) and Surussavadee and Staelin (IEEE-TGRS, 46, 99-108, 2008 and IEEE-TGRS, 46, 109-118, 2008).

The estimates of precipitation rates and hydrometeor water-paths were trained using a mesoscale NWP model (MM5), a two-stream radiative transfer model (TBSCAT), and electromagnetic models for ice hydrometeors.

The MM5 model has been initialized with *NCAR reanalysis* for 122 representative storms and their corresponding brightness temperatures simulated at AMSU frequencies.

New version the NNs are trained by CDRD

H-SAF precipitation product H02 Example (Rome flood, 20.10.2011)

NRL Blending Algorithm & MW (SSM/I – SSMIS + AMSU/MHS) + IR (SEVIRI)

*timeliness: 15 min time resolution: 15 min space resolution: 8 km sampling: 5 km

CMORPH Algorithm MW (SSM/I – SSMIS + AMSU – MHS) + IR (SEVIRI)

EUMETSAT H-SAF PR-OBS-4 Microwave-derived Rain Rate propagated using GEO-IR information

H-SAF precipitation product H04 Algorithm

LEO + GEO Satellite Merging – TRANSPORT METHODS Developed by NOAA (Joyce et al. 2004)

GMD 2012 May 22:05:18:24 -- Production_SATELLITE_AREA_C.N.M.C.A--- Algorithm_J.S.A.C._C.N.R.--

Derived from precipitation maps generated by merging MW images from operational sun-synchronous satellites and IR images from geostationary satellites (i.e., either product **H03 or H04**).

Simple time integration of product H03 (96 samples/day at 15-min intervals) over 3, 6, 12 and 24 hours.

The alternative accumulated precipitation product derived by use of H04 is still not operational but it is easy to be implemented.

Climatological thresholds are applied on the final products to avoid outliers.

Examples

C HSAF Support to Operational Hydrology and Water Management

Blended SEVIRI Convection area / LEO MW Convective Precipitation

EUMETSAT H-SAF PR-OBS-6 Blended SEVIRI Convection area / LEO MW Convective Precipitation 8 $\delta \rho$ 15 Ś 30. 30 " " o D g సి 50.0 (mm/h) 5 10 Instantaneous Rain Rate (mm/h): 20091001 1957

timeliness: 15 min time resolution: 15 min space resolution: 8 km sampling: 5 km

GM 2012 Jul 16 10 34 27 -- Productor_SATELLITE_AREA_C.N.M.C.A--- Algorithm J.S.A.C._C.N.R.--

H-SAF precipitation product H06 Nefodina

- Red shades indicate cloud tops in the growing phase
- Pink shades indicate cloud tops in the dissipation phase
- Color darkness indicates intensity

H-SAF precipitation product H03 Example

H-SAF precipitation product H06 Example

H-SAF new precipitation products

Global Precipitation Measurement

H-SAF new precipitation products

H-SAF new precipitation products

H19 Rainfall intensity from GMI Bayesian algorithm

- Instantaneous precipitation maps generated from GPM Microwave Imager (GMI) on board the GPM Core Observatory satellite;
- Bayesian retrieval strategy adapted to characteristics of GMI in order to provide instantaneous precipitation retrieval;

H20 Rainfall intensity from GMI Neural Network algorithm

- NN approach using Dual-frequency Precipitation Radar (DPR) on GPM Core Observatory together with GMI;
- NN algorithm trained using coincident GMI brightness temperatures measurements and DPR derived rainfall profiles;

H22 Snowfall intensity

- High-frequency passive microwave algorithm producing snowfall intensity maps in NRT;
- Based on channel combinations in the window and water vapour absorption bands of AMSU-B and MHS;
- The algorithm is designed to produce its own snow cover map (wet and dry snow), but it can also use a snow map from the SAF product.

H-SAF PP to monitor severe events 9-11.10.2014, Piedmont

C HSAF Support to Operational Hydrology and Water Management

[mm]

9.11

10.11

11.11

Panegrossi et al., 2016, J-STARS, in press

H-SAF PP to monitor severe events 7-8.11.2014 Medicane Qendresa

GMI

Panegrossi et al., 2016, J-STARS, in press

H-SAF PP to monitor severe events 7-8.11.2014 Medicane Qendresa

precipitation product calibration/validation

For all products generated by the project, the product validation cluster is responsible for:

- monitoring the progress in product quality as further development evaluating statistical scores and case study analysis on the base of comparison between satellite products and ground data;
- providing a validation service to end-users publishing on the H-SAF web-page the statistical scores evaluated and the case studies analysed;
- providing online quality control to end-users generating NRT quality maps;
- monitoring operational features of the products as actual arrival, timeliness, intelligibility, etc..;
- providing a ground data service inside the project for algorithm calibration and validation activities.

PPV group

Silvia Puca (Leader)	Dipartimento Protezione Civile (DPC)	Italy
Emanuela Campione	Dipartimento Protezione Civile (DPC)	Italy
Gianfranco Vulpiani	Dipartimento Protezione Civile (DPC)	Italy
Marco Petracca	Dipartimento Protezione Civile DPC	Italy
Emmanuel Roulin	Institut Royal Météorologique (IRM)	Belgium
Pierre Baguis	Institut Royal Météorologique (IRM)	Belgium
Gergana Kozinarova	NIMH-BAS	Bulgaria
Georgy Koshinchanov	NIMH-BAS	Bulgaria
Peer Helmke	Bundesanstalt für Gewässerkunde (BfG)	Germany
Judit Kerenyi	Hungarian Meteorological Service (OMSZ)	Hungary
Judit Kerenyi Federico Porcu'	Hungarian Meteorological Service (OMSZ) Ferrara University, Department of Physics (UniFe)	Hungary Italy
Judit Kerenyi Federico Porcu' Bozena Lapeta	Hungarian Meteorological Service (OMSZ)Ferrara University, Department of Physics (UniFe)Institute of Meteorology and Water Management (IMWM)	Hungary Italy Poland
Judit KerenyiFederico Porcu'Bozena LapetaRafal Iwanski	Hungarian Meteorological Service (OMSZ)Ferrara University, Department of Physics (UniFe)Institute of Meteorology and Water Management (IMWM)Institute of Meteorology and Water Management (IMWM)	Hungary Italy Poland Poland
Judit KerenyiFederico Porcu'Bozena LapetaRafal IwanskiJán Kaňák	Hungarian Meteorological Service (OMSZ)Ferrara University, Department of Physics (UniFe)Institute of Meteorology and Water Management (IMWM)Institute of Meteorology and Water Management (IMWM)Slovenský Hydrometeorologický Ústav (SHMÚ)	Hungary Italy Poland Poland Slovakia
Judit KerenyiFederico Porcu'Bozena LapetaRafal IwanskiJán KaňákĽuboslav Okon	Hungarian Meteorological Service (OMSZ)Ferrara University, Department of Physics (UniFe)Institute of Meteorology and Water Management (IMWM)Institute of Meteorology and Water Management (IMWM)Slovenský Hydrometeorologický Ústav (SHMÚ)Slovenský Hydrometeorologický Ústav (SHMÚ)	Hungary Italy Poland Poland Slovakia Slovakia
Judit KerenyiFederico Porcu'Bozena LapetaRafal IwanskiJán KaňákLuboslav OkonMariàn Jurasek	Hungarian Meteorological Service (OMSZ)Ferrara University, Department of Physics (UniFe)Institute of Meteorology and Water Management (IMWM)Institute of Meteorology and Water Management (IMWM)Slovenský Hydrometeorologický Ústav (SHMÚ)Slovenský Hydrometeorologický Ústav (SHMÚ)Slovenský Hydrometeorologický Ústav (SHMÚ)	Hungary Italy Poland Poland Slovakia Slovakia Slovakia
Judit KerenyiFederico Porcu'Bozena LapetaBozena LapetaJán KaňákJán KaňákĽuboslav OkonMariàn JurasekAhmet Öztopal	Hungarian Meteorological Service (OMSZ)Ferrara University, Department of Physics (UniFe)Institute of Meteorology and Water Management (IMWM)Institute of Meteorology and Water Management (IMWM)Slovenský Hydrometeorologický Ústav (SHMÚ)Slovenský Hydrometeorologický Ústav (SHMÚ)	Hungary Italy Poland Poland Slovakia Slovakia Slovakia Turkey

PPV strategy

A TWO FOLD VALIDATION STRATEGY has been defined:

- large statistics (multi-categorical and continuous) – COMMON VALIDATION
- selected case studies

 SPECIFIC VALIDATION

Both components are considered complementary in assessing the accuracy of the implemented algorithms.

Large statistics help in identifying existence of **pathological behavior**, selected case studies are useful in identifying **the sources** of such behavior.

The **heterogeneity** due to climatology, land cover, orography, and type of ground observations available for each Country, is an important resource for the PPVG, but the definition and agreement on a **common validation methodology** is mandatory.

PPV strategy

the ground reference is represented by radar and rain gauge data;

quality filters for radar and rain gauge data are adopted;

the **precipitation products** are **evaluated on the satellite native grid.** The radar and rain gauge data were up-scaled taking into account the satellite scanning geometry and IFOV resolution of AMSU-B scan, SSMIS and SEVIRI;

multi category and continuous statistics are evaluated monthly

MCstatistic:

ACCURACY POD FAR BIAS ETS OR HSS

Cstatistic:

- **Number of points**
- obs. Mean rainrate
- □ est. Mean rainrate
- obs. Maximum rainrate
- □ est. Maximum rainrate
- □ Mean error
- Multiplicative bias
- Mean absolute error
- Root mean square error
- Correlation coefficient
- Standard deviation

PPV multicategorical skill scores (Nurmi, 2003)

$$BIAS = \frac{hits + false \ alarms}{hits + misses}$$
$$HSS = \frac{\sum_{i=1}^{k} H_i - \sum_{i=1}^{k} O_i \cdot E_i}{N - \sum_{i=1}^{k} O_i \cdot E_i}$$

PPV continuous statistics scores

Mean error =
$$ME = \frac{1}{N} \sum_{k=1}^{N} (sat_k - true_k)$$

Standard deviation =
$$SD = \sqrt{\frac{1}{N} \sum_{k=1}^{N} (sat_k - true_k - ME)^2}$$

$$MeanAbsoluteError = \frac{1}{N} \sum_{k=1}^{N} \left| sat_{k} - true_{k} \right|$$

$$MultiplicativeBias = \frac{\frac{1}{N}\sum_{k=1}^{N} sat_{k}}{\frac{1}{N}\sum_{k=1}^{N} true_{k}}$$

$$Correlation \ coefficient = \rho = \frac{\sum_{k=1}^{N} \left(sat_k - \overline{sat} \right) \left(true_k - \overline{true} \right)}{\sqrt{\sum_{k=1}^{N} \left(sat_k - \overline{sat} \right)^2 \sum_{1}^{N} \left(true_k - \overline{true} \right)^2}}$$

$$\overline{sat} = \frac{1}{N} \sum_{k=1}^{N} sat_k$$

$$\overline{true} = \frac{1}{N} \sum_{k=1}^{N} true_k$$

$$RMSE = RootMeanSquareError = \sqrt{\frac{1}{N}\sum_{k=1}^{N} (sat_k - true_k)^2}$$

$$URD - RMSE = \sqrt{\frac{1}{N} \sum_{k=1}^{N} \frac{(sat_k - true_k)^2}{true_k^2}}^{2k}$$

PPV raingauge networks (~4100 stations)

PPV raingauge networks

PV raingauge networks											
Country	Rain gauge type (TB/W)	Minimum detectable rain rate (mm h ⁻¹)	Maximum detectable rain rate (mm h ⁻¹)	Heating system (Y/N)	Cumulation interval (min)	AMD (km)					
Belgium	ТВ	0.1 mm	N/A	Ν	60	11.2					
Bulgaria	TB/W	0.1 mm	2000	Y	60, 120	7					
Germany	W	0.05 mm	3000	Y	60	17					
Italy	ТВ	0.2 mm	N/A	Y (16%)	10 - 60	9.5					
Poland	ТВ	0.1 mm	N/A	Y	10	13.3					
Turkey	ТВ	0.2 mm	720	Y	1	27					

PPV raingauges interpolation

- Point-like rain gauge measurements derive from networks with different geographical distributions, densities, quality. The PPVG decided to develop a common interpolation strategy.
- The rain gauge measurements are interpolated onto a unique 5x5 km grid.
- Three interpolation techniques have been tested: **Barnes** method (Barnes, 1964), **Ordinary Kriging** and the Random Generator of Spatial Interpolation from uncertain Observations (**GRISO**). After a sensitivity study, the PPVG to adopted the GRISO technique as common spatial interpolation of rain gauge data.
- The **GRISO** (Pignone et al., 2010) is a Kriging-based technique implemented by the CIMA-Research Foundation. The GRISO technique preserves the values observed at rain gauge location allowing for a dynamical definition of the covariance structure associated to each rain gauge by the interpolation procedure.

PPV raingauge flowchart

PPV radar networks (54 C-band, 1 Ka-band radars) H SAF

PPV impact of radar quality

PPV radar flowchart

PPV H01 results

PR-OBS-1			RAD	AR		RAIN GAUGE						
	summer 2011	autumn 2011	winter 11-12	spring 2012	summer 2012	YEAR 11-12	summer 2011	autumn 2011	winter 11-12	spring 2012	summer 2012	YEAR 11-12
NS	74922	42927	53822	38511	24205	234387	38664	81411	60412	59820	12929	253236
NR	24331	12278	15913	15020	8556	76098	21734	66190	74009	51340	7054	220327
ME [mmh⁻¹]	0,25	0,14	0,19	0,71	0,57	0,35	-0,36	-0,38	-0,34	-0,03	-0,14	-0,28
SD [mmh ⁻¹]	2,54	1,24	0,91	1,89	2,97	1,91	3,60	2,89	1,15	1,86	2,68	2,13
MAE[mmh ⁻¹]	1,31	0,93	0,82	1,39	1,50	1,18	1,68	1,51	0,82	1,15	1,40	1,21
RMSE [mmh⁻¹]	2,77	1,38	1,05	2,15	3,02	2,09	3,63	2,92	1,21	1,88	2,69	2,16
MB	1,26	1,24	1,39	1,79	1,50	1,42	0,79	0,76	0,65	0,98	0,91	0,78

The validation results of the PR-OBS-1 product show:

-a yearly RMSE of around 2.1 mmh⁻¹ and MAE of 1.2 mmh⁻¹ obtained in comparison with both radar and rain gauge data.

-There is an overall tendency to overestimate the radar (ME equal to 0.35 mmh⁻¹) and to underestimate the rain gauge rates (ME equal to -0.28 mmh⁻¹) at European scale.

PPV H02 results

PR-OBS-2			RAD	AR		RAIN GAUGE						
	summer 2011	autumn 2011	winter 11-12	spring 2012	summer 2012	YEAR 11-12	summer 2011	autumn 2011	winter 11-12	spring 2012	summer 2012	YEAR 11-12
NS	59726	47990	21778	46849	38472	214815	18844	57596	32220	59736	13276	181672
NR	37779	24737	35964	33548	21673	153701	19727	72124	146918	88593	11315	338677
ME[mmh⁻¹]	-0,26	-0,36	-0,49	-0,24	-0,21	-0,32	-0,95	-1,08	-0,78	-0,83	-1,14	-0,88
SD [mmh⁻¹]	1,48	1,03	0,72	0,86	1,74	1,13	2,43	1,90	0,89	1,34	2,34	1,36
MAE[mmh ⁻¹]	0,83	0,69	0,66	0,60	0,82	0,72	1,37	1,33	0,86	0,96	1,45	1,04
RMSE [mmh⁻¹]	1,53	1,09	0,90	0,92	1,65	1,20	2,62	2,20	1,19	1,60	2,62	1,64
MB	0,86	0,64	0,31	0,69	0,89	0,66	0,41	0,30	0,17	0,22	0,33	0,23

Similar results are obtained for PR-OBS-2, based on AMSU-A and AMSU-B data:

-Yearly statistical scores show better agreement with reference rain rates: RMSE is equal to 1.2 mmh⁻¹ (using radar as ground reference) and 1.6 mmh⁻¹ (using rain gauges as ground reference), and MAE equal to 0.7 mmh⁻¹ (radar) and 1 mmh⁻¹ (rain gauges).

-In this case, an underestimation with respect to both radar and rain gauge precipitation fields is observed (ME lower than 0).

PPV H03/H04 comparisons 05.11.2011-06.11.2011

PPV H03/H04 comparisons monthly scale

PP hydrological validation

0°

Country	Test site	Hydrological model					
Finland	Ounasjoki (no 1)	HOPS (FMI in-h model) version	ouse developed 1.3				
Belgium	Demer-Scheldt (no 2)	SCHEME (SCHEldt and model)					
	Ourthe-Meuse (no 3)						
Germany	Mosel (4), Lahn (5), Neckar (6), Main (7)	HBV LARSIM					
Slovakia	Nitra (8) Kvsuca (9)	Hron-NAM					
	Hron (10)	HBV					
	Soła (11) Raba (12)						
Poland	Czarna and Lagowianka (13)	HBV	Runoff Model)				
	Wkra (14)						
Italy	Orba (no 15)	Continuum Model					
Dulgaria	Chepelarska (no 16)	Isba-Modcou model					
Duigaria	Varbica river (no 17)	Mike-11/NAM					
	Killi subbasin in Susurluk Basin (18)	Artificial	HEC-HMS				
	Ulus subbasin in Western Black Sea Basin (19)	Networks (ANN)					
Turkey	Upper Euphrates (20)	SRM (Snowmelt Runoff Model)					
	Kırkgöze (20 – eastern part of the Upper Euphrates basin)	HBV					

PP hydrological validation

PP hydrological validation of PR-OBS-3

PP hydrological validation: example

Characteristics		Month											
		7	8	9	10	11	12	1	2	3	4	5	6
Due du et	GPM	37,2	100,5	38,2	30,6	40,2	10,6	18,8	32,6	23,4	62,6	91,8	52,4
Froduct	GD	70	42,6	121,2	31,9	81,3	22,5	12,1	15,7	54,6	72,6	238,1	49,7
	Mean Qobs	7,02	2,27	4,40	2,99	7,77	7,66	4,80	5,76	7,95	7,45	23,67	2,43
	Mean QsimGD	8,31	4,15	8,55	5,84	9,02	5,84	3,94	3,84	5,49	5,28	29,44	5,64
floc	Mean QsimSAT	5,01	6,99	3,84	5,35	5,23	4,49	4,19	4,83	3,36	4,32	5,83	6,26
Ru	Std Dev Qobs	7,28	0,71	3,76	2,21	6,57	5,75	2,91	2,12	8,57	4,88	39,79	1,08
	Std Dev QsimGD	6,20	0,64	5,43	2,98	5,15	2,55	0,09	0,39	3,50	1,66	54,19	2,14
	Std Dev QsimSAT	1,32	4,66	0,56	1,13	1,19	0,60	0,41	1,22	0,54	0,87	1,89	2,87
sdo	MxAE	41,40	35,90	17,40	10,20	32,60	43,90	11,20	6,60	48,40	25,00	218,51	11,90
ĕ	MAE	3,58	4,77	2,39	2,71	4,07	3,21	1,85	1,64	4,87	3,55	18,13	3,86
Sat	RMSE	7,43	6,60	3,72	2,92	6,77	6,53	3,06	2,24	9,73	5,72	42,53	4,51
<u>.</u>	R	0,19	0,27	0,20	0,65	0,33	0,11	-0,15	0,35	-0,01	0,20	0,66	0,67
Qs Qs	E	-0,04	-86,15	0,02	-0,75	-0,06	-0,29	-0,10	-0,12	-0,29	-0,37	-0,14	-16,93
sdo	MxAE	16,00	4,10	17,80	15,00	17,20	29,20	11,40	7,10	32,00	21,50	142,97	7,30
ĕ	MAE	1,81	1,90	4,13	2,84	2,23	2,17	1,72	2,04	2,78	2,50	8,89	3,24
Ĝ	RMSE	2,27	1,93	5,00	3,12	3,19	3,98	3,08	2,71	5,76	4,24	20,96	3,47
<u>B</u> .	R	0,97	0,84	0,87	0,92	0,90	0,92	-0,51	0,60	0,97	0,83	0,96	0,94
Qs	E	0,90	-6,45	-0,77	-1,00	0,76	0,52	-0,12	-0,64	0,55	0,24	0,72	-9,62
	MxAE	30,60	34,80	24,70	12,10	22,50	16,80	2,50	7,70	17,50	7,20	348,40	13,30
CD AT	MAE	3,37	2,84	4,71	0,98	4,00	1,36	0,26	0,99	2,14	1,20	23,63	1,36
ji n	RMSE	6,99	5,40	7,13	2,30	6,10	2,83	0,47	1,58	4,12	1,73	58,06	2,52
Qs ti	R	0,13	0,17	0,19	0,76	0,41	0,20	0,28	0,12	0,01	0,49	0,60	0,56
	Е	-0,27	-69,54	-0,73	0,41	-0,40	-0,24	-23,55	-15,52	-0,39	-0,09	-0,15	-0,39
Concitivity	Max change	0,80	2,17	1,25	1,16	1,37	0,44	0,86	1,34	1,22	1,81	1,97	1,38
Sensitivity	Mean change	0,13	0,60	0,17	0,22	0,33	0,04	0,11	0,34	0,09	0,32	0,58	0,21
	MxAE	5,30	5,20	4,20	2,60	2,80	1,80	1,50	1,40	3,40	2,30	8,10	5,10
tion	MAE	0,10	0,15	0,17	0,06	0,13	0,04	0,04	0,07	0,08	0,12	0,32	0,12
odt. idat	RMSE	0,38	0,62	0,49	0,27	0,37	0,18	0,12	0,21	0,31	0,30	0,98	0,51
Pr val	R	0,32	0,21	0,44	0,37	0,28	-0,01	0,14	0,03	0,21	0,53	0,32	0,11
	Е	-3,63	-0,17	-4,63	-0,59	-2,18	-5,46	-0,58	-0,76	-1,74	-0,24	-7,05	-0,40

PP hydrological validation: remarks

- Runoff estimation depends on many factors, since rainfall– runoff processes are influenced not only by meteorological phenomena
- Although rainfall is usually a significant factor, a given amount and duration of rainfall may or may not affect a hydrograph, depending on the hydrologic characteristics of the catchment
- Usually the relationship between specific rainfall events and the resulting runoff is extremely complicated. Thus, it is very difficult to provide clear and simple feedback to product Developers.
- Hydrological validation can be treated as a final validation of products that are important for hydrological issues.

http://hsaf.meteoam.it

http://hsaf.meteoam.it

H-SAF Products Download Centre

All H-SAF products are owned by EUMETSAT, and the EUMETSAT SAF Data Policy applies. They are available for all users free of charge. Users should recognise the respective roles of EUMETSAT, the H-SAF Leading Entity and the H-SAF Consortium when publishing results that are based on H-SAF products.

Access to H-SAF on-line archive (last 60 days)

This function allows the direct access to the H-SAF FTP server by the web browser.

Place an order to get the H-SAF archived data (basic)

This function allows access to the H-SAF internal order centre. This service offers all basic functions to carry out orders on H-SAF historical archives. Orders placed will be submitted for approval and will be processed within three working days

Place an order to get the H-SAF archived data (advanced) - coming soon

This function allows access to EUMETSAT Data Centre. A registration to EUMETSAT portal is required. The EUMETSAT portal offers advanced functions of management and control of orders, among which the possibility to monitor the status of the orders, to delete an orders and to make the cloning of orders. Orders placed will be submitted for approval and will be processed within three working days. The possibility of clipping of data based on geographical selection, provided by EUMETSAT Data Centre, is not active yet for H-SAF products.

References

Barnes, S. L.: A Technique for Maximizing Details in Numerical Weather Map Analysis. J. Appl. Meteor., 3, 396–409, 1964.

- Casella, D., Panegrossi, G., Sanò, P., Mugnai, A., Smith, E.A., Tripoli, G.J., Dietrich, S., Formenton, M., Di Paola, F., Leung, H. W.-Y., and Mehta, A.V.: Transitioning from CRD to CDRD in Bayesian retrieval of rainfall from satellite passive microwave measurements, Part 2: Overcoming database profile selection ambiguity by consideration of meteorological control on microphysics, IEEE Trans. Geosci. Remote Sens., 51, 4650–4671, 2013
- Chen, F. W. and D. H. Staelin, 2003: AIRS/AMSU/HSB precipitation estimates, IEEE Trans. Geosci. Remote Sens., vol. 41, no. 2, pp. 410–417.
- Mugnai, A., Smith, E.A., Tripoli, G.J., Bizzarri, B., Casella, D., Dietrich, S., Di Paola, F., Panegrossi, G., and Sanò, P.: CDRD and PNPR satellite passive microwave precipitation retrieval algorithms: EuroTRMM / EURAINSAT origins and H-SAF operations, Nat. Hazards Earth Syst. Sci., 13, 887–912, doi: 10.5194/nhess-13-887-2013, 2013a.
- Mugnai, A., Casella, D., Cattani, E., Dietrich, S., Laviola, S., Levizzani, V., Panegrossi, G., Petracca, M., Sanò, P., Di Paola, F., Biron, D., De Leonibus, L., Melfi, D., Rosci, P., Vocino, A., Zauli, F., Puca, S., Rinollo, A., Milani, L., Porcù, F., and Gattari, F.: Precipitation products from the Hydrology SAF, Nat. Hazards Earth Syst. Sci., in press, 2013b.

Nurmi, P.: Recommendations on the verification of local weather forecasts. 11 ECMWF Tech. Memo. N. 430, 19pp, 2003.

- Panegrossi, G., D. Casella, S. Dietrich, A. C. Marra, M. Petracca, P. Sanò, A. Mugnai, L. Baldini, N. Roberto, E. Adirosi, R. Cremonini, R. Bechini, G. Vulpiani, and <u>F. Porcù</u>, 2016, Use of the GPM constellation for monitoring heavy precipitation events over the Mediterranean region, *J-STARS, in press*
- Pignone F., Rebora N., Silvestro F. and Castelli F., GRISO (Generatore Random di Interpolazioni Spaziali da Osservazioni incerte)-Piogge, Relazione delle attività del I anno inerente la Convenzione 778/2009 tra Dipartimento di Protezione Civile e Fondazione CIMA (Centro Internazionale in Monitoraggio Ambientale), report n° 272/2010, pp 353, 2010.
- Puca, S., Porcù, F., Rinollo, A., Vulpiani, G., Baguis, P., Campione, E., Ertürk, A., Gabellani, S., Iwański, R., Jurašek, M., Kańák, J., Kerényi, J., Koshinchanov, G., Kozinarova, G., Krahe, P., Łapeta, B., Lábó, E., Milani, L., Okon, Ľ., Öztopal, A., Pagliara, P., Pignone, F., Rachimow, C., Rebora, N., Roulin, E., Sönmez, İ., Toniazzo, A., Biron, D., Casella, D., Cattani, E., Dietrich, S., Laviola, S., Levizzani, V., Melfi, D., Mugnai, A., Panegrossi, G., Petracca, M., Sanò, P., Zauli, F., Rosci, P., Agosta, E., Gattari, F., and De Leonibus, L.: The validation service of the Hydrological SAF geostationary and polar satellite precipitation products, Nat. Hazards Earth Syst. Sci., 14, 871–889, 2014.
- Porcù F., L. Milani and M. Petracca: On the uncertainties in validating satellite instantaneous rainfall estimates with raingauge operational network. Atmos. Res., submitted, 2013.
- Rinollo, A., G. Vulpiani, S. Puca, J. Kaňák, E. Lábó, Ľ. Okon, E. Roulin, P. Baguis, E. Cattani, S. Laviola, V. Levizzani: Definition and impact of a quality index for radar-based reference measurements in the H-SAF precipitation product validation, NHESS, (submitted paper), 2013.
- Sanò, P., Casella, D., Mugnai, A., Schiavon, G., Smith, E.A., and Tripoli, G.J.: Transitioning from CRD to CDRD in Bayesian retrieval of rainfall from satellite passive microwave measurements, Part 1: Algorithm description and testing, IEEE Trans. Geosci. Remote Sens., 51, 4119–4143, 2013.
- Surussavadee C., and Staelin, D.H.: Satellite Retrievals of Artic and Equatorial Rain and Snowfall Rates Using Millimeter Wavelengths, IEEE T. Geosci. Remote, 47(11), 3697–3707, 2009.